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Discrete Fourier Transform (DFT)

The DFT represents a length-N discrete-time sequence x(t), t =

0, 1, . . . , N − 1, as a linear combination of the “basis” sequences:

Φk(t) ,
1√
N

ejkωt, k = 0, 1, . . . , N − 1 where ω = 2π
N . (1)

Note from the identity ejθ = cos θ + j sin θ that

Φk(t) =
1√
N

cos(kωt) + j
1√
N

sin(kωt)

which has frequency kω. The figure below shows Φ0(t), . . . , Φ3(t)
when N = 4, that is ω = π

2 .

Finding the DFT of x(t) means finding coefficients X(k), k = 0, 1, . . . , N−
1, such that

x(t) =
N−1

∑
k=0

X(k)Φk(t). (2)

This amounts to a change of basis where x(t), t = 0, 1, . . . , N − 1, is
replaced with X(k), k = 0, 1, . . . , N − 1.

Figure 1: Basis functions for N = 4.
Here ω = π

2 and ejkω is marked on the
unit circle for k = 0, 1, 2, 3. Note from
(1) that Φk(t) = 1

2 (e
jkω)t. The functions

Φ0 and Φ2 are real-valued while Φ1
and Φ3 are complex.
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The advantage of the new basis is that, instead of the values of x(t)
at each time t, we represent the sequence with coefficients X(k) of
its frequency components. This allows, for example, compression
algorithms that allocate more bits to accurately store the coefficients
of frequency components that matter more to the quality of sound
than other frequencies.

Example (N = 2): Consider the length-two signal where

x(0) = 2, x(1) = 3.

Since N = 2, we have ω = π,

Φ0(t) =
1√
2

ej0t =
1√
2

and Φ1(t) =
1√
2

ejπt =
1√
2
(−1)t.

We view x(t), Φ0(t), Φ1(t) as length-two vectors whose entries are
the values that each sequence takes at t = 0, 1:

~x =

[
2
3

]
, ~Φ0 =

1√
2

[
1
1

]
, ~Φ1 =

1√
2

[
1
−1

]
.

Then DFT becomes a change of basis that we can perform using
standard linear algebra:

~x = X(0)~Φ0 + X(1)~Φ1.

If we multiply both sides from the left with ~ΦT
0 and note that ~Φ0 and

~Φ1 are orthonormal, that is ~ΦT
0
~Φ1 = 0 and ~ΦT

0
~Φ0 = ~ΦT

1
~Φ1 = 1, we get

~ΦT
0~x = X(0) ~ΦT

0
~Φ0 ⇒ X(0) = ~ΦT

0~x =
5√
2

.

Similarly, multiplying both sides from the left with ~ΦT
1 gives

~ΦT
1~x = X(1) ~ΦT

1
~Φ1 ⇒ X(1) = ~ΦT

1~x = − 1√
2

.

Complex Inner Products

In the example above ~Φ0 and ~Φ1 were real-valued and we used the
usual definition of inner product, ~ΦT

0
~Φ1, to show their orthogonality.

For complex-valued vectors ~x and ~y the appropriate inner product is

~x∗~y

where ~x∗ is the conjugate transpose which means that, in addition to
transposing, we take the complex conjugate. As an illustration,

~x =

[
1
j

]
⇒ ~xT =

[
1 j

]
~x∗ =

[
1 −j

]
. (3)
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For a real-valued ~x there is no difference between ~x∗ and ~xT , as the
complex conjugate of a real number is itself. Note that

~x∗~x = ‖~x‖2

which follows because ~x∗~x = ∑i x(i)∗x(i) = ∑i |x(i)|2. For the
example in (3), ~x∗~x = 1− j2 = 2 which means ‖~x‖ =

√
2. By contrast,

~xT~x = 1 + j2 = 0 which shows the necessity of conjugation when
defining complex inner products.

Example (N = 4): Consider now a length-four sequence. We have
ω = 2π

N = π
2 and Φk(t) are as shown in Figure 1 above, specifically:

Φ0(t) =
1
2

ej0t =
1
2

Φ1(t) =
1
2

ej π
2 t =

1
2
(j)t

Φ2(t) =
1
2

ej2 π
2 t =

1
2
(−1)t

Φ3(t) =
1
2

ej3 π
2 t =

1
2
(−j)t.

We view Φ0(t), . . . , Φ3(t) as length-four vectors whose entries are the
values that each sequence takes at t = 0, 1, 2, 3:

~Φ0 =
1
2


1
1
1
1

 ~Φ1 =
1
2


1
j
−1
−j

 ~Φ2 =
1
2


1
−1
1
−1

 ~Φ3 =
1
2


1
−j
−1

j

 .

To find X(k), k = 0, 1, 2, 3, such that
x(0)
x(1)
x(2)
x(3)

 = X(0)~Φ0 + X(1)~Φ1 + X(2)~Φ2 + X(3)~Φ3 (4)

we will again use the orthonormality of the basis vectors ~Φ0, . . . , ~Φ3.
You can indeed show that

~Φ∗k~Φl =

{
0 k 6= l
1 k = l.

Then, if we multiply both sides of (4) from the left by ~Φ∗k , we get

~Φ∗k


x(0)
x(1)
x(2)
x(3)

 = X(k)~Φ∗k~Φk = X(k).
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Combining these equations for k = 0, 1, 2, 3 we get
X(0)
X(1)
X(2)
X(3)

 =


~Φ∗0
~Φ∗1
~Φ∗2
~Φ∗3




x(0)
x(1)
x(2)
x(3)



=
1
2


1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j




x(0)
x(1)
x(2)
x(3)

 .

As an illustration, for the sequence x(0) = 1, x(1) = x(2) = x(3) = 0,
we get

X(0) = X(1) = X(2) = X(3) =
1
2

.

The summation of Φ0(t), . . . , Φ3(t) with these weights indeed recov-
ers x(t) as shown in the figure below. The shaded region demarcates
the time interval of interest: t = 0, 1, 2, 3.
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imaginary parts cancel out
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