Questions

1. Lagrange interpolation and polynomial basis

In practice, to approximate some unknown or complex function \(f(x) \), we take \(n \) evaluations/samples of the function, denoted by \(\{(x_i, y_i) \overset{\Delta}{=} f(x_i) \}; \ 0 \leq i \leq n - 1 \}. \) With the Occam’s razor principle in mind, we try to fit a polynomial function of least degree (which is \(n - 1 \)) that passes through all the given points.

(a) Using the polynomial basis \(\{1, x, x^2, \ldots, x^{n-1}\} \), the fitting problem can be cast into finding the coefficients \(a_0, a_1, \ldots, a_{n-1} \) of the function

\[
g(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}
\]

such that \(g(x_i) = y_i, \ \forall i = 0, 1, \ldots, n - 1. \) Find out the set of equations that need to be satisfied, and write them in a matrix form \(A\vec{a} = \vec{y} \), with \(\vec{a} = [a_0, a_1, \ldots, a_{n-1}]^T \) and \(\vec{y} = [y_0, y_1, \ldots, y_{n-1}]^T \).

(b) Observe that in order to find those coefficients, we need to calculate \(\vec{a} = A^{-1}\vec{y} \). Solving that system of equations might be tricky if \(n \) is large.

The idea of Lagrange interpolation is to use a different basis \(\{L_0(x), L_1(x), \ldots, L_{n-1}(x)\} \) for the subspace of polynomials of the desired degree, which has the property that

\[
L_i(x_j) = \begin{cases}
1 & \text{if } j = i \\
0 & \text{if } j \neq i
\end{cases}
\]

With that the fitting problem becomes finding the coefficients \(b_0, b_1, \ldots, b_{n-1} \) of the function

\[
h(x) = b_0 L_0(x) + b_1 L_1(x) + b_2 L_2(x) + \cdots + b_{n-1} L_{n-1}(x)
\]

such that \(h(x_i) = y_i, \ \forall i = 0, 1, \ldots, n - 1. \) Find the set of equations that need to be satisfied, and write them in matrix/vector form. What do you observe?
(c) **Show that if we define**

\[L_i(x) = \prod_{j=0, j \neq i}^{n-1} \frac{(x-x_j)}{(x_i-x_j)} \]

then the property required in part (b) is satisfied. What is the intuition behind this construction?

(d) Based on the previous two parts, write down the explicit form of \(h(x) \) that passes through the samples \(\{(x_i, y_i); 0 \leq i \leq n - 1\} \). The resulting formula is the so called Lagrange polynomial which passes through the \(n \) sampled points.

(e) Explicitly find the Lagrange polynomial given evaluated samples \(f(-1) = 3, f(0) = -4, f(1) = 5, f(2) = -6 \).

(f) Suppose that we want to model a function using a degree-at-most \(n - 1 \) polynomial. Our data set for the behavior of the system includes \(m \) sample/data points, where \(m > n \). **Write out the set of equations that satisfy this system. How can we ‘solve’ the over-constrained set of equations?**

(g) By hand plot what \(1, x, x^2, x^3, \ldots \) look like on the interval from \(-1\) to \(+1\) and then from \(-2\) to \(+2\). Look at the endpoints, the values at \(\pm 1 \), and other points. What do you notice? What might go wrong when we try to learn high-degree polynomials over such intervals from data?

Contributors:

- Yuxun Zhou.
- Sidney Buchbinder.

© UCB EECS 16B, Fall 2019. All Rights Reserved. This may not be publicly shared without explicit permission.