Singular Value Decomposition

The definition

The SVD is a useful way to characterize a matrix. Let *A* be a matrix from \mathbb{R}^n to \mathbb{R}^m (or $A \in \mathbb{R}^{m \times n}$) of rank *r*. It can be decomposed into a sum of *r* rank-1 matrices:

$$A = \sum_{i=1}^{r} \sigma_i \vec{u}_i \vec{v}_i^T$$

where

• $\vec{u}_1, \ldots, \vec{u}_r$ are orthonormal vectors in \mathbb{R}^m ; $\vec{v}_1, \ldots, \vec{v}_r$ are orthonormal vectors in \mathbb{R}^n .

• the singular values $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$ are always real and positive.

We can also re-write the decomposition in matrix form:

$$A = U_1 S V_1^T$$

The properties of U_1 , S and V_1 are,

• U_1 is an $[m \times r]$ matrix whose columns consist of $\vec{u}_1, \ldots, \vec{u}_r$. Consequently,

$$U_1^T U_1 = I_{r \times r}$$

• V_1 is an $[n \times r]$ matrix whose columns consist of $\vec{v}_1, \ldots, \vec{v}_r$. Consequently,

$$V_1^T V_1 = I_{r \times r}$$

- U_1 characterizes the column space of *A* and V_1 characterizes the row space of *A*.
- S is an [r×r] matrix whose diagonal entries are the singular values of A arranged in descending order. The singular values are the square roots of the nonzero eigenvalues of A^TA (or, identically, AA^T).

The full matrix form of SVD is

$$A = U\Sigma V^T$$

where $U^T U = I_{m \times m}$, $V^T V = I_{n \times n}$, $\Sigma \in \mathbb{R}^{m \times n}$, which contains *S* and elsewhere zero.

The calculation

We calculate the SVD of matrix *A* as follows.

- (a) Pick $A^T A$ or $A A^T$.
- (b) i. If using $A^T A$, find the eigenvalues λ_i of $A^T A$ and order them, so that $\lambda_1 \ge \cdots \ge \lambda_r > 0$ and $\lambda_{r+1} = \cdots = \lambda_n = 0$.

If using AA^T , find its eigenvalues $\lambda_1, \ldots, \lambda_m$ and order them the same way.

ii. If using $A^T A$, find orthonormal eigenvectors \vec{v}_i such that

$$A^T A \vec{v}_i = \lambda_i \vec{v}_i, \quad i = 1, \dots, r$$

If using AA^T , find orthonormal eigenvectors \vec{u}_i such that

$$AA^T\vec{u}_i = \lambda_i\vec{u}_i, \quad i = 1, \dots, r$$

iii. Set $\sigma_i = \sqrt{\lambda_i}$.

If using $A^T A$, obtain \vec{u}_i from $\vec{u}_i = \frac{1}{\sigma_i} A \vec{v}_i$, i = 1, ..., r.

- If using AA^T , obtain \vec{v}_i from $\vec{v}_i = \frac{1}{\sigma_i}A^T\vec{u}_i$, i = 1, ..., r.
- (c) This is not in scope but if you want to completely construct the *U* or *V* matrix, complete the basis (or columns of the appropriate matrix) using Gram-Schmidt. Remember to normalize afterwards.

The full matrix form of SVD is taken to better understand the matrix *A* in terms of the 3 nice matrices U, Σ , V. Often, we do not completely construct the U and V matrices.

1 SVD and Fundamental Subspaces

Define the matrix

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}.$$

a) Find the SVD of *A* (compact form is fine).

b) Find the rank of *A*.

c) Find a basis for the kernel (or nullspace) of *A*.

d) Find a basis for the range (or columnspace) of *A*.

e) Repeat parts (a) - (d) for A^T instead. What are the relationships between the answers for A and the answers for A^T ?

2 Eigenvalue Decomposition and Singular Value Decomposition

We define Eigenvalue Decomposition as follows:

If a matrix $A \in \mathbb{R}^{n \times n}$ has *n* linearly independent eigenvectors $\vec{p}_1, \ldots, \vec{p}_n$ with eigenvalues $\lambda_i, \ldots, \lambda_n$, then we can write:

$$A = P\Lambda P^{-1}$$

Where columns of *P* consist of $\vec{p}_1, \ldots, \vec{p}_n$, and Λ is a diagonal matrix with diagonal entries $\lambda_i, \ldots, \lambda_n$.

Consider a matrix $A \in \mathbb{S}^n$, that is, $A = A^T \in \mathbb{R}^{n \times n}$. This is a symmetric matrix and has orthorgonal eigenvectors. Therefore its eigenvalue decomposition can be written as,

$$A = P\Lambda P^T$$

a) First, assume $\lambda_i \ge 0$, $\forall i$. Find a SVD of *A*.

b) Let one particular eigenvalue λ_i be negative, with the associated eigenvector being p_i . Succinctly,

$$Ap_j = \lambda_j p_j \text{ with } \lambda_j < 0$$

We are still assuming that,

$$A = P\Lambda P^T$$

- a) What is the singular value σ_i associated to λ_i ?
- b) What is the relationship between the left singular vector u_j , the right singular vector v_j and the eigenvector p_j ?