Singular Value Decomposition

The definition

The SVD is a useful way to characterize a matrix. Let A be a matrix from \mathbb{R}^{n} to \mathbb{R}^{m} (or $A \in \mathbb{R}^{m \times n}$) of rank r. It can be decomposed into a sum of r rank-1 matrices:

$$
A=\sum_{i=1}^{r} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{T}
$$

where

- $\vec{u}_{1}, \ldots, \vec{u}_{r}$ are orthonormal vectors in $\mathbb{R}^{m} ; \vec{v}_{1}, \ldots, \vec{v}_{r}$ are orthonormal vectors in \mathbb{R}^{n}.
- the singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$ are always real and positive.

We can also re-write the decomposition in matrix form:

$$
A=U_{1} S V_{1}^{T}
$$

The properties of U_{1}, S and V_{1} are,

- U_{1} is an $[m \times r]$ matrix whose columns consist of $\vec{u}_{1}, \ldots, \vec{u}_{r}$. Consequently,

$$
U_{1}^{T} U_{1}=I_{r \times r}
$$

- V_{1} is an $[n \times r]$ matrix whose columns consist of $\vec{v}_{1}, \ldots, \vec{v}_{r}$. Consequently,

$$
V_{1}^{T} V_{1}=I_{r \times r}
$$

- U_{1} characterizes the column space of A and V_{1} characterizes the row space of A.
- S is an $[r \times r]$ matrix whose diagonal entries are the singular values of A arranged in descending order. The singular values are the square roots of the nonzero eigenvalues of $A^{T} A$ (or, identically, $A A^{T}$).

The full matrix form of SVD is

$$
A=U \Sigma V^{T}
$$

where $U^{T} U=I_{m \times m}, V^{T} V=I_{n \times n}, \Sigma \in \mathbb{R}^{m \times n}$, which contains S and elsewhere zero.

The calculation

We calculate the SVD of matrix A as follows.
(a) Pick $A^{T} A$ or $A A^{T}$.
(b) i. If using $A^{T} A$, find the eigenvalues λ_{i} of $A^{T} A$ and order them, so that $\lambda_{1} \geq \cdots \geq \lambda_{r}>0$ and $\lambda_{r+1}=\cdots=\lambda_{n}=0$.

If using $A A^{T}$, find its eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$ and order them the same way.
ii. If using $A^{T} A$, find orthonormal eigenvectors \vec{v}_{i} such that

$$
A^{T} A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}, \quad i=1, \ldots, r
$$

If using $A A^{T}$, find orthonormal eigenvectors \vec{u}_{i} such that

$$
A A^{T} \vec{u}_{i}=\lambda_{i} \vec{u}_{i}, \quad i=1, \ldots, r
$$

iii. Set $\sigma_{i}=\sqrt{\lambda_{i}}$.

If using $A^{T} A$, obtain \vec{u}_{i} from $\overrightarrow{\mathcal{u}}_{i}=\frac{1}{\sigma_{i}} A \vec{v}_{i}, \quad i=1, \ldots, r$.
If using $A A^{T}$, obtain \vec{v}_{i} from $\vec{v}_{i}=\frac{1}{\sigma_{i}} A^{T} \overrightarrow{\mathcal{u}}_{i}, \quad i=1, \ldots, r$.
(c) This is not in scope but if you want to completely construct the U or V matrix, complete the basis (or columns of the appropriate matrix) using Gram-Schmidt. Remember to normalize afterwards.

The full matrix form of SVD is taken to better understand the matrix A in terms of the 3 nice matrices U, Σ, V. Often, we do not completely construct the U and V matrices.

1 SVD and Fundamental Subspaces

Define the matrix

$$
A=\left[\begin{array}{cc}
1 & -1 \\
-2 & 2 \\
2 & -2
\end{array}\right]
$$

a) Find the SVD of A (compact form is fine).
b) Find the rank of A.
c) Find a basis for the kernel (or nullspace) of A.
d) Find a basis for the range (or columnspace) of A.
e) Repeat parts (a) - (d) for A^{T} instead. What are the relationships between the answers for A and the answers for A^{T} ?

2 Eigenvalue Decomposition and Singular Value Decomposition

We define Eigenvalue Decomposition as follows:
If a matrix $A \in \mathbb{R}^{n \times n}$ has n linearly independent eigenvectors $\vec{p}_{1}, \ldots, \vec{p}_{n}$ with eigenvalues $\lambda_{i}, \ldots, \lambda_{n}$, then we can write:

$$
A=P \Lambda P^{-1}
$$

Where columns of P consist of $\vec{p}_{1}, \ldots, \vec{p}_{n}$, and Λ is a diagonal matrix with diagonal entries $\lambda_{i}, \ldots, \lambda_{n}$.

Consider a matrix $A \in \mathbb{S}^{n}$, that is, $A=A^{T} \in \mathbb{R}^{n \times n}$. This is a symmetric matrix and has orthorgonal eigenvectors. Therefore its eigenvalue decomposition can be written as,

$$
A=P \Lambda P^{T}
$$

a) First, assume $\lambda_{i} \geq 0, \forall i$. Find a SVD of A.
b) Let one particular eigenvalue λ_{j} be negative, with the associated eigenvector being p_{j}. Succinctly,

$$
A p_{j}=\lambda_{j} p_{j} \text { with } \lambda_{j}<0
$$

We are still assuming that,

$$
A=P \Lambda P^{T}
$$

a) What is the singular value σ_{j} associated to λ_{j} ?
b) What is the relationship between the left singular vector u_{j}, the right singular vector v_{j} and the eigenvector p_{j} ?

