1 Polynomial Interpolation

Given n distinct points, we can find a unique degree $n-1$ polynomial that passes through these points. Let the polynomial p be

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} .
$$

Let the n points be

$$
p\left(x_{1}\right)=y_{1}, p\left(x_{2}\right)=y_{2}, \cdots, p\left(x_{n}\right)=y_{n},
$$

where $x_{1} \neq x_{2} \neq \cdots \neq x_{n}$.
We can construct a matrix-vector equation as follows to recover the polynomial p.

$$
\underbrace{\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n-1}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right]}_{\vec{a}}=\underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]}_{\vec{y}}
$$

We can solve for the a values by setting:

$$
\vec{a}=A^{-1} \vec{y}
$$

Note that the matrix A is known as a Vandermonde matrix whose determinant is given by

$$
\operatorname{det}(A)=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)
$$

Since $x_{1} \neq x_{2} \neq \cdots \neq x_{n}$, the determinant is non-zero and A is always invertible.

2 Polynomial Regression

Sometimes we may want to fit our data to a polynomial with an order less than $n-1$. If we fit the data to a polynomial of order $m<n$ we get:

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m-1} x^{m-1}
$$

Now when we construct the matrix-vector equation to recover polynomial p, we get:

$$
\underbrace{\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{m-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{m-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{m} & x_{m}^{2} & \ldots & x_{m}^{m-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{m-1}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{m-1}
\end{array}\right]}_{\vec{a}}=\underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m} \\
\vdots \\
y_{n}
\end{array}\right]}_{\vec{y}}
$$

With this matrix equation, we have n equations with m unknowns, which means our system is over-defined (since $m<n$). One way to find the best fitting a values for this polynomial is to use least-squares, where you set:

$$
\vec{a}=\left(A^{T} A\right)^{-1} A^{T} \vec{y}
$$

3 Lagrange Interpolation

In practice, to approximate some unknown or complex function $f(x)$, we take n evaluations/samples of the function, denoted by $\left\{\left(x_{i}, y_{i} \triangleq f\left(x_{i}\right)\right) ; 0 \leq i \leq n-1\right\}$. For the rest of this question, we will consider the following three points: $\{(0,3),(1,4),(3,-6)\}$.
a) Using the interpolation method discussed above, find the matrix A such that $A \vec{a}=\vec{y}$.
b) What are the coefficients a_{0}, a_{1}, a_{2} ?
c) Observe that this system very quickly becomes frustrating to solve-as n increases, the difficulty of calculating the inverse increases far more quickly.
This is where Lagrange interpolation can be useful; the idea of Lagrange interpolation is that, instead of writing the polynomial in question in terms of $\left\{1, x, x^{2}\right\}$, we will write it in terms of $\left\{L_{0}(x), L_{1}(x), L_{2}(x)\right\}$, where each

$$
L_{i}\left(x_{j}\right)= \begin{cases}1 & \text { if } j=i \\ 0 & \text { if } j \neq i\end{cases}
$$

With that, the problem reduces to finding these new coefficients b_{0}, b_{1}, b_{2} of the function

$$
f(x)=b_{0} L_{0}(x)+b_{1} L_{1}(x)+b_{2} L_{2}(x)
$$

such that $f\left(x_{i}\right)=y_{i}, \forall i=0,1,2$. What are these coefficients b_{i} ?
d) Show that if we define

$$
L_{i}(x)=\prod_{j=0 ; j \neq i}^{n-1} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)}
$$

then the condition requested from part (c) is satisfied.
e) Based on the previous two parts, write down the explicit form of $f(x)$ that passes through the samples $\{(0,3),(1,4),(3,-6)\}$ in terms of x as opposed to $L_{i}(x)$. The resulting formula is the so called Lagrange polynomial which passes through the n sampled points. Does this agree with the previous method?
f) Now, suppose instead we wanted to use regression to fit our 3 points to a linear system $f(x)=a_{0}+a_{1} x$. What are the best-fit coefficients a_{0} and a_{1} in this situation?

