1 Circulant Matrices

A square matrix C_{h} is circulant if each row vector is rotated one element to the right relative to the preceding row vector.

$$
C_{h}=\left[\begin{array}{ccccc}
h_{0} & h_{N-1} & \cdots & h_{2} & h_{1} \tag{1}\\
h_{1} & h_{0} & h_{N-1} & & h_{2} \\
\vdots & h_{1} & h_{0} & \ddots & \vdots \\
h_{N-2} & \vdots & \ddots & \ddots & h_{N-1} \\
h_{N-1} & h_{N-2} & \cdots & h_{1} & h_{0}
\end{array}\right]
$$

2 Circulant Matrices \& Convolution

Consider the signal $x[n]$ of length 3 and an impulse response $h[n]$ of length 2 . You may assume that they are zero everywhere else.

$$
\vec{x}=\left[\begin{array}{lll}
-1 & 3 & -2
\end{array}\right]^{T} \quad \vec{h}=\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \tag{2}
\end{array}\right]^{T}
$$

a) What is the convolution $y[n]=x[n] * h[n]$? Also what is the length of this output signal?
b) Now write each term of the output signal $y[n]$ as a sum using the convolution formula and set up a matrix equation $\vec{y}=A \vec{x}$. What is the size of this matrix?
c) Add elements to the matrix A and zeros to the vector \vec{x} to create a square matrix C_{h} that is circulant.
d) What is the importance behind this result? Compare the runtimes between convolution and the Fast Fourier Transform (FFT) which takes $O(N \log N)$ operations.

3 Complex Inner Product

For the complex vector space \mathbb{C}^{n}, we can no longer use our conventional real dot product as a valid inner product for \mathbb{C}^{n}. This is because the real dot product is no longer positive-definite for complex vectors. For example, let $\vec{v}=\left[\begin{array}{l}j \\ j\end{array}\right]$. Then, $\vec{v} \cdot \vec{v}=j^{2}+j^{2}=-2<0$.
Therefore, for two vectors $\vec{u}, \vec{v} \in \mathbb{C}^{n}$, we define the complex inner product to be:

$$
\langle\vec{u}, \vec{v}\rangle=\sum_{i=1}^{n} \bar{u}_{i} v_{i}=\overline{\vec{u}}^{T} \vec{v}=\vec{u}^{*} \vec{v}
$$

where - denotes the complex conjugate and $\vec{\bullet}^{*}$ denotes the complex conjugate transpose.
The complex inner product satisfies the following properties:

- Conjugate Symmetry: $\langle\vec{u}, \vec{v}\rangle=\overline{\langle\vec{v}, \vec{u}\rangle}$
- Scaling: $\langle\vec{u}, c \vec{v}\rangle=c\langle\vec{u}, \vec{v}\rangle$ and $\langle c \vec{u}, \vec{v}\rangle=\bar{c}\langle\vec{u}, \vec{v}\rangle$
- Additivity: $\langle\vec{u}+\vec{v}, \vec{w}\rangle=\langle\vec{u}, \vec{w}\rangle+\langle\vec{v}, \vec{w}\rangle$ and $\langle\vec{u}, \vec{v}+\vec{w}\rangle=\langle\vec{u}, \vec{v}\rangle+\langle\vec{u}, \vec{w}\rangle$
- Positive-definite: $\langle\vec{u}, \vec{u}\rangle \geq 0$ with $\langle\vec{u}, \vec{u}\rangle=0$ if and only if $\vec{u}=\overrightarrow{0}$

Recall that the complex conjugate of a complex number $z=a+j b=r e^{j \theta}$ is equal to $\bar{z}=a-j b=r e^{-j \theta}$.
The conjugate transpose of a vector $\vec{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$ is $\vec{v}^{*}=\left[\begin{array}{lll}\bar{v}_{1} & \ldots & \bar{v}_{n}\end{array}\right]$.

Adjoint of a Matrix

The adjoint or conjugate-transpose of a matrix A is the matrix A^{*} such that $A_{i j}^{*}=\overline{A_{j i}}$. From the complex inner product, one can show that

$$
\begin{equation*}
\langle A \vec{x}, \vec{y}\rangle=\left\langle\vec{x}, A^{*} \vec{y}\right\rangle \tag{3}
\end{equation*}
$$

A matrix is self-adjoint or Hermitian if $A=A^{*}$. Self-adjoint matrices are the complex extension of real-symmetric matrices. There is an equivalent version of the Spectral Theorem for such self-adjoint matrices.

Unitary Matrices

A unitary matrix is a square matrix whose columns are orthonormal with respect to the complex inner product.

$$
U=\left[\begin{array}{llll}
\vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{n}
\end{array}\right], \quad \vec{u}_{i}^{*} \vec{u}_{j}= \begin{cases}1, & \text { if } i=j \\
0, & \text { otherwise }\end{cases}
$$

Note that $U^{*} U=U U^{*}=I$, so the inverse of a unitary matrix is its conjugate transpose $U^{-1}=U^{*}$.
Since the columns of a unitary matrix are orthonormal vectors, we can interpret these matrices as "rotation" and "reflection" matrices of the standard axes. This also implies that $\|U \vec{v}\|=\|\vec{v}\|$ for any vector \vec{v}.

4 Everything is Complex

In this question, we explore the similarities and differences between real and complex vector spaces.
a) Suppose that we are given a matrix U that has orthornomal columns.

$$
U=\left[\begin{array}{ccc}
\mid & & \mid \tag{4}\\
\vec{u}_{1} & \ldots & \vec{u}_{n} \\
\mid & & \mid
\end{array}\right]
$$

We would like to change coordinates to express \vec{x} as a linear combination of these orthonormal basis vectors. Find scalars α_{i} in terms of \vec{x} and \vec{u}_{i} so that

$$
\begin{equation*}
\vec{x}=\alpha_{1} \vec{u}_{1}+\ldots+\alpha_{n} \vec{u}_{n} \tag{5}
\end{equation*}
$$

b) Show that the eigenvalues λ of a unitary matrix U must always have magnitude 1 .
c) Let A be an $m \times n$ matrix with complex entries. Show that $A^{*} A$ must have non-negative eigenvalues. Hint: Think back to what we did for the real case. Consider the quantity $\|A \vec{v}\|^{2}$ where \vec{v} is an eigenvector of $A^{*} A$.

