1 RC Circuits

In this problem, we will be using differential equations to find the voltage across a capacitor over time in an RC circuit. We set up our problem by first defining three functions over time: I(t) is the current at time t, V(t) is the voltage across the circuit at time t, and $V_C(t)$ is the voltage across the capacitor at time t.

Recall from 16A that the voltage across a resistor is defined as $V_R = RI_R$ where I_R is the current across the resistor. Also, recall that the voltage across a capacitor is defined as $V_C = \frac{Q}{C}$ where Q is the charge across the capacitor.

Figure 1: Example Circuit

a) First, find an equation that relates the current through the capacitor $I_C(t)$ with the voltage across the capacitor $V_C(t)$.

b) Using nodal analysis, write a differential equation for the capacitor voltage $V_C(t)$. Note that this is also the voltage for the node n_2 .

c) Let's suppose that at t = 0, the capacitor is charged to a voltage V_{DD} ($V_C(0) = V_{DD}$). Let's also assume that V(t) = 0 for all $t \ge 0$.

Figure 2: Circuit for part (d)

Solve the differential equation for $V_C(t)$ for $t \ge 0$.

d) Now, let's suppose that we start with an uncharged capacitor $V_C(0) = 0$. We apply some constant voltage $V(t) = V_{DD}$ across the circuit. Solve the differential equation for $V_C(t)$ for $t \ge 0$.

Figure 3: Circuit for part (e)

2 Graphing RC Responses

Consider the following RC Circuit with a single resistor R, capacitor C, and voltage source V(t).

Figure 4: Example Circuit

a) Let's suppose that at t = 0, the capacitor is charged to a voltage V_{DD} ($V_c(0) = V_{DD}$) and that V(t) = 0 for all $t \ge 0$. Plot the response $V_c(t)$.

b) Now let's suppose that at t = 0, the capacitor is uncharged ($V_c(0) = 0$) and that $V(t) = V_{DD}$ for all $t \ge 0$. Plot the response $V_c(t)$.

To better understand our responses, we now define a **time constant** which is a measure of how long it takes for the capacitor to charge or discharge. Mathematically, we define τ as the time at which $V_C(\tau)$ is $\frac{1}{e} = 36.8\%$ away from its steady state value.

Figure 5: Different values of capacitor voltage at different times, relative to τ .

c) Suppose that $V_{DD} = 5 \text{ V}$, $R = 100 \Omega$, and $C = 10 \mu\text{F}$. What is the time constant τ for this circuit?

d) Going back to part (b), on what order of magnitude of time (nanoseconds, milliseconds, 10's of seconds, etc.) does this circuit settle (V_c is > 95% of its value as $t \rightarrow \infty$)?

- e) Give 2 ways to reduce the settling time of the circuit if we are allowed to change one component in the circuit.
- f) Suppose we have a source V(t) that alternates between 0 and $V_{DD} = 1$ V. Given RC = 0.1 s, plot the response V_c if $V_c(0) = 0$.

g) Now suppose we have the same source V(t) but RC = 1 s, plot the response V_c if $V_c(0) = 0$.