## 1 Inverter, Capacitor, and Delay

We will now work towards understanding delays in digital circuits. Here, we consider a circuit where the output node $V_{\text {out }}$ of an inverter is connected to a capacitor. Such capacitance is often used to model other logic gates or transistors being driven by, or loading the inverter. In the absence of such a capacitive load, the output of the inverter $V_{\text {out }}$ switches immediately after the input $V_{\text {in }}$ switches.


Figure 1: CMOS Inverter driving a capacitive load.

In this problem, we will be using the resistor-switch model of a transistor for analysis. These models have been shown here for your reference. Furthermore, the threshold voltages for the transistors are $V_{t n}=\frac{V_{D D}}{10}$ and $V_{t p}=\frac{-V_{D D}}{10}$.


Figure 2: Transistor Resistor-switch models for NMOS and PMOS transistors.
a) Assume that $V_{i n}$ is held at 0 for a long time and then, at time $t_{0}$, it is switched to $V_{D D}$. Draw equivalent circuits before and after $t_{0}$ using the resistor switch model for the transistors in the inverter.
b) What is the state of the capacitor $C_{\text {load }}$ at $t=t_{0}$ ? Will it charge or discharge from this point on?
c) Write out a differential equation governing the evolution of $V_{\text {out }}$ after $t_{0}$. How long will it take after $t_{0}$ for the output voltage $V_{\text {out }}$ to drop below $V_{t n}=\frac{V_{D D}}{10}$ so that a subsequent NMOS transistor will switch from on to off?

## 2 Differential equations with piecewise constant inputs

Let $x(\cdot)$ be a solution to the following differential equation:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} x(t)=\lambda(x(t)-u(t)) \tag{1}
\end{equation*}
$$

Let $T>0$. Let $x[\cdot]$ "sample" $x(\cdot)$ as follows:

$$
\begin{equation*}
x[n]=x(n T) . \tag{2}
\end{equation*}
$$

Assume that $u(\cdot)$ is constant between samples of $x(\cdot)$, i.e.

$$
\begin{equation*}
u(t)=u[n] \quad \text { when } \quad n T \leq t<(n+1) T \tag{3}
\end{equation*}
$$

The above described system can be seen as an RC circuit with piecewise constant voltage applied where $\lambda=-\frac{1}{R C}$ and $u[n]=V_{i n}(t)$ is kept constant when $n T \leq t<(n+1) T$.


Figure 3: Example Circuit
The solution for the above system is therefore given by

$$
\begin{equation*}
x(n T+\tau)=e^{\lambda \tau} x[n]+\left(1-e^{\lambda \tau}\right) u[n] \quad \text { for any } n \text { and } 0 \leq \tau<T . \tag{4}
\end{equation*}
$$

From the solution above, the relation between $x[n]$ and $x[n+1]$ is given by

$$
x[n+1]=e^{\lambda T} x[n]+\left(1-e^{\lambda T}\right) u[n] .
$$

a) Solve differential equation (1) for $n T \leq t \leq(n+1) T$ with the initial condition $x(n T)=x[n]$ and $u(t)=u[n]$ for $n T \leq t \leq(n+1) T$. Show that the solution is exactly $(4)$.
b) Let $T=1$ and $\lambda=-100$. Sketch a piecewise constant input $u[\cdot]$ of your choice, then sketch $x(t)$. Mark $x[n]$. Your sketch doesn't have to be exact, but you should be able to supply analysis to
justify why it looks a certain way: how are you using the fact that $\lambda T$ is large and negative?
c) Let $T=1$ and $\lambda=-1$. Define $u[n]$ as follows:

$$
u[n]= \begin{cases}1, & n \text { is even }  \tag{5}\\ -1, & n \text { is odd }\end{cases}
$$

Sketch $x(t)$.

## 3 A circuit with two capacitors

Consider the following circuit given in Figure 4. The devices are set to the following values: $C_{1}=1 \mu F, C_{2}=\frac{1}{3} \mu F, R_{1}=\frac{1}{3} M \Omega, R_{2}=\frac{1}{2} M \Omega$.


Figure 4: Two dimensional system: a circuit with two capacitors, like the one in lecture.
a) Write the differential equations for the circuit above with the variables being $V_{\mathrm{C} 1}$ and $V_{\mathrm{C} 2}$. The result should only contain $V_{C 1}, V_{C 2}$ and $V_{i n}$ with capacitance and resistance plugged in with their values given above.

