1 Diagonalization

Consider an $n \times n$ matrix A that has n linearly independenteigenvalue/eigenvector pairs $\left(\lambda_{1}, \vec{v}_{1}\right), \ldots,\left(\lambda_{n}, \vec{v}_{n}\right)$ that can be put into a matrices V and Λ.

$$
V=\left[\begin{array}{ccc}
\mid & & \mid \\
\vec{v}_{1} & \ldots & \vec{v}_{n} \\
\mid & & \mid
\end{array}\right] \Lambda=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]
$$

a) Show that $A V=V \Lambda$.
b) Use the fact in part (a) to conclude that $A=V \Lambda V^{-1}$.

2 Systems of Differential Equations

Consider a system of differential equations (valid for $t \geq 0$)

$$
\begin{align*}
& \frac{d}{d t} x_{1}(t)=-4 x_{1}(t)+x_{2}(t) \tag{1}\\
& \frac{d}{d t} x_{2}(t)=2 x_{1}(t)-3 x_{2}(t) \tag{2}
\end{align*}
$$

with initial conditions $x_{1}(0)=3$ and $x_{2}(0)=3$.
a) Write out the system of differential equations and initial conditions in the matrix/vector form

$$
\begin{equation*}
\frac{d}{d t} \vec{x}(t)=A \vec{x}(t) \tag{3}
\end{equation*}
$$

b) Find the eigenvalues λ_{1}, λ_{2} and eigenspaces for the differential matrix A.
c) Let us define a new variable $\vec{z}=V^{-1} \vec{x}$. Use the diagonalization of $A=V \Lambda V^{-1}$ to rewrite the original differential equation in terms of $z_{i}(t)$ and a diagonal matrix Λ.

$$
\begin{equation*}
\frac{d}{d t} \vec{z}(t)=\Lambda \vec{z}(t) \tag{4}
\end{equation*}
$$

Remember to find the new initial conditions $z_{1}(0), z_{2}(0)$.
d) Solve the differential equation for $z_{i}(t)$.
e) Convert your solutions $z_{i}(t)$ back into the original variables to find the solution $x_{i}(t)$.
f) We can solve this equation using a slightly shorter approach by observing that the solutions for $x_{i}(t)$ will all be of the form

$$
x_{i}(t)=\sum_{k} c_{k} e^{\lambda_{k} t}
$$

where λ_{k} is an eigenvalue of our differential equation relation matrix A.
Since we have observed that the solutions will include $e^{\lambda_{i} t}$ terms, once we have found the eigenvalues for our differential equation matrix, we can guess the forms of the $x_{i}(t)$ as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
\alpha_{1} e^{\lambda_{1} t}+\alpha_{2} e^{\lambda_{2} t} \\
\beta_{1} e^{\lambda_{1} t}+\beta_{2} e^{\lambda_{2} t}
\end{array}\right]
$$

where $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ are all constants.
Take the derivative to write out

$$
\left[\begin{array}{l}
\frac{d}{d d} x_{1}(t) \\
\frac{d}{d t} x_{2}(t)
\end{array}\right] .
$$

and connect this to the given differential equation.
Solve for $x_{i}(t)$ from this form of the derivative.

