1 Conditions for Equilibria

Continuous-Time Systems

Let us take a closer look at the conditions for a linear system represented by the differential equation

$$\frac{d}{dt}\vec{x}(t) = A\vec{x}(t) + B\vec{u}(t)$$
(1)

From the get-go we see that $(\vec{x}^*, \vec{u}^*) = (\vec{0}, \vec{0})$ must be an equilibrium point. This is since the system is at rest. Now if we put in a constant input \vec{u}^* then to solve for equilibria, we get the following system of equations

$$A\vec{x} + B\vec{u}^* = \vec{0} \tag{2}$$

To solve for the states \vec{x} in which the system would be in equilibrium, our analysis boils down to whether the square matrix A is invertible ¹.

- a) If *A* is invertible, then there is a unique equilibrium point $\vec{x}^* = -A^{-1}B\vec{u}^*$.
- b) If *A* is non-invertible, depending on the range of *A*, we have two scenarios.
 - If $B\vec{u} \in Col(A)$ then we will have infinitely many equilibrium points.
 - If $B\vec{u} \notin Col(A)$ then the system has no solution and we will have no equilibrium points.

Discrete-Time Systems

Now let's take a look at the discrete-time system

$$\vec{x}(t+1) = A\vec{x}(t) + B\vec{u}(t)$$
 (3)

Again we see that $(\vec{0}, \vec{0})$ is an equilibrium point but notice that the conditions for equilibria are different for discrete-time systems. A system is in equilibrium if it is not changing. In otherwords, this means that $\vec{x}^*(t+1] = \vec{x}^*(t)$ therefore, for a constant input \vec{u}^* we get the following system of equations

$$\vec{x} = A\vec{x} + B\vec{u}^* \implies (I - A)\vec{x} = B\vec{u}^*$$
(4)

The conditions for equilibria now depend on the matrix I - A being invertible instead of the matrix A.

¹This should be review from 16A/54, but we restate it here since it isn't quite obvious when *A* is singular or non-invertible. Normally a singular matrix has infinite solutions but take the system $A\vec{x} = \vec{b}$ with $A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. This leads to a contradiction that $x_1 = 0 \neq 1$.

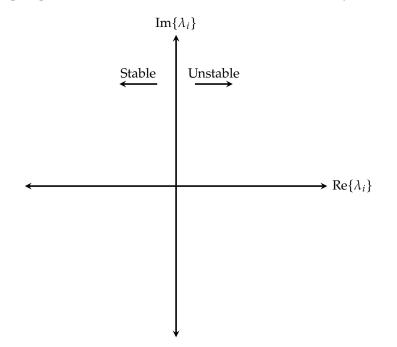
2 Stability

Continuous time systems

A continuous time system is of the form:

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t}(t) = A\vec{x}(t) + B\vec{u}(t)$$

This system is stable if $\operatorname{Re}\{\lambda_i\} < 0$ for all λ_i , where λ_i 's are the eigenvalues of A. If we plot all λ_i for A on the complex plane, if all λ_i lie to the left of $\operatorname{Re}\{\lambda_i\} = 0$, then the system is stable.



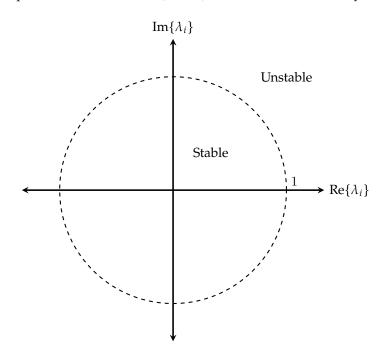
If $\operatorname{Re}\{\lambda_i\} \ge 0$, the system is unstable in the context of BIBO stability.

Discrete time systems

A discrete time system is of the form:

$$\vec{x}(t+1) = A\vec{x}(t) + B\vec{u}(t)$$

This system is stable if $|\lambda_i| < 1$ for all λ_i , where λ_i 's are the eigenvalues of A. If we plot all λ_i for A on the complex plane, if all λ_i lie within (not on) the unit circle, then the system is stable.



If $|\lambda| \ge 1$, we say the system is unstable in the context of Bounded-Input Bounded-Output (BIBO) stability.

3 Jacobian Warm-Up

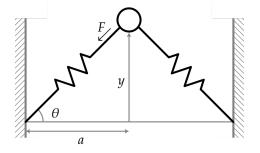
Consider the following function $f:\mathbb{R}^2\mapsto\mathbb{R}^3$

$$f(x_1, x_2) = \begin{bmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \\ f_3(x_1, x_2) \end{bmatrix} = \begin{bmatrix} x_1^2 - e^{x_2^2} \\ x_1^2 + \sin(x_1)x_2^2 \\ \log(1 + x_1^2) \end{bmatrix}$$

Calculate its Jacobian.

4 Linearization

Consider a mass attached to two springs:



We assume that each spring is linear with spring constant k and resting length X_0 . We want to build a state space model that describes how the displacement y of the mass from the spring base evolves. The differential equation modeling this system is $\frac{d^2y}{dt^2} = -\frac{2k}{m}(y - X_0\frac{y}{\sqrt{y^2+a^2}})$.

a) Write this model in state space form $\dot{x} = f(x)$.

b) Find the equilibrium of the state-space model. You can assume $X_0 < a$.

c) Linearize your model about the equilibrium.

d) Compute the eigenvalues of your linearized model. Is this equilibrium stable?

5 Stability in discrete time system

Determine which values of α and β will make the following discrete-time state space models stable. Assume, α and β are real numbers and $b \neq 0$.

a)

$$x(t+1) = \alpha x(t) + bu(t)$$

b)

$$\vec{x}(t+1) = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} \vec{x}(t) + b\vec{u}(t)$$

c)

$$\vec{x}(t+1) = \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix} \vec{x}(t) + b\vec{u}(t)$$