1 System Identification and Linear Control

A scalar discrete-time system has the following dynamics:

$$
x(t+1)=\lambda x(t)+g(u(t))
$$

where $g: \mathbb{R} \rightarrow \mathbb{R}$ not necessarily linear.
a) If g is approximated to order 2 around the operating point $u^{*}=0$, so that

$$
x(t+1) \approx \lambda x(t)+\beta_{0}+\beta_{1} u(t)+\beta_{2} u^{2}(t),
$$

what should β_{0}, β_{1}, and β_{2} be, when $u(t)$ is small?
b) Suppose that $x(0)=0$. We apply a sequence of inputs

$$
\begin{equation*}
(u(0), u(1), \ldots, u(N-1)) \tag{1}
\end{equation*}
$$

and observe states $x(1), x(2), \ldots, x(N)$. Derive the least-squares estimates of $\lambda, \beta_{0}, \beta_{1}$, and β_{2}.

2 System Identification

Let's now look at how System Identification works in the vector case. Again you are given an unknown discrete-time system. We don't know its specifics but we know that it takes one scalar input and as two observable states.
We would like to find a linear model of the form

$$
\vec{x}(t+1)=A \vec{x}(t)+B u(t)+\vec{w}(t)
$$

where $\vec{w}(t)$ is an error term due to unseen distrubances and noise, $u(t)$ is a scalar input, and

$$
A=\left[\begin{array}{ll}
a_{0} & a_{1} \\
a_{2} & a_{3}
\end{array}\right], \quad B=\left[\begin{array}{l}
b_{0} \\
b_{1}
\end{array}\right], \quad \vec{x}(t)=\left[\begin{array}{l}
x_{0}(t) \\
x_{1}(t)
\end{array}\right] .
$$

To identify the system parameters from measured data, we need to find the unknowns: $a_{0}, a_{1}, a_{2}, a_{3}$, b_{0} and b_{1}, however, you can only interact with the system via a blackbox model. The model allows you to view the states $\vec{x}(t)=\left[\begin{array}{ll}x_{0}(t) & x_{1}(t)\end{array}\right]^{\top}$ and it takes a scalar input $u(t)$ that drives the system to the next state $\vec{x}(t+1)=\left[\begin{array}{ll}x_{0}(t+1) & x_{1}(t+1)\end{array}\right]^{\top}$.
a) Write scalar equations for the new states, $x_{0}(t+1)$ and $x_{1}(t+1)$ in terms of a_{i}, b_{i}, the states $x_{0}(t), x_{1}(t)$, and the input $u(t)$. Here, assume that $\vec{w}(t)=\overrightarrow{0}$ (i.e. the model is perfect).
b) Now we want to identify the system parameters. We observe the system at the initial state $\vec{x}(0)=\left[\begin{array}{l}x_{0}(0) \\ x_{1}(0)\end{array}\right]$, input $u(0)$ and observe the next state $\vec{x}(1)=\left[\begin{array}{l}x_{0}(1) \\ x_{1}(1)\end{array}\right]$. We can continue this for a sequence of inputs. Say we feed in a total of 4 inputs $u(0), u(1), u(2), u(3)$ into our blackbox. This allows us to observe $x_{0}(0), x_{0}(1), x_{0}(2), x_{0}(3), x_{0}(4)$ and $x_{1}(0), x_{1}(1), x_{1}(2), x_{1}(3), x_{1}(4)$, which we can use to identify the system.
To identify the system we need to set up an approximate (because of potential disturbances) matrix equation

$$
D \vec{p} \approx \vec{y}
$$

using the observed values above and the unknown parameters we want to find. Suppose you
are given the form of \vec{p} and \vec{y} as follows:

$$
\vec{y}=\left[\begin{array}{l}
x_{0}(1) \tag{2}\\
x_{0}(2) \\
x_{0}(3) \\
x_{0}(4) \\
x_{1}(1) \\
x_{1}(2) \\
x_{1}(3) \\
x_{1}(4)
\end{array}\right] \quad \vec{p}=\left[\begin{array}{l}
a_{0} \\
a_{1} \\
b_{0} \\
a_{2} \\
a_{3} \\
b_{1}
\end{array}\right]
$$

For the \vec{p} and \vec{y}, what is the D so that $D \vec{p} \approx \vec{y}$ makes sense?
c) Now that we have set up $D \vec{p} \approx \vec{y}$, explain how you would use this approximate equation to estimate the unknown values $a_{0}, a_{1}, a_{2}, a_{3}, b_{0}$ and b_{1} assuming the columns of D are linearly independent.
d) Suppose instead of 4 inputs, we have m inputs: $\vec{x}(0), \ldots, \vec{x}(m-1)$ and $u(0), \ldots, u(m-1)$. And observe $\vec{x}(m)$.
What is the minimum value of m you need to identify the system parameters?
e) What could go wrong in the previous cases with 4 inputs? What kind of inputs would make least-squares fail to give you the parameters you want?

