1 Inner Products

An inner product $\langle\cdot, \cdot\rangle$ on a vector space V over \mathbb{R} is a function that takes in two vectors and outputs a scalar, such that $\langle\cdot, \cdot\rangle$ is symmetric, linear, and positive-definite.

- Symmetry: $\langle\vec{u}, \vec{v}\rangle=\langle\vec{v}, \vec{u}\rangle$
- Scaling: $\langle c \vec{u}, \vec{v}\rangle=c\langle\vec{u}, \vec{v}\rangle$ and $\langle\vec{u}, c \vec{v}\rangle=c\langle\vec{u}, \vec{v}\rangle$
- Additivity: $\langle\vec{u}+\vec{v}, \vec{w}\rangle=\langle\vec{u}, \vec{w}\rangle+\langle\vec{v}, \vec{w}\rangle$ and $\langle\vec{u}, \vec{v}+\vec{w}\rangle=\langle\vec{u}, \vec{v}\rangle+\langle\vec{u}, \vec{w}\rangle$
- Positive-definite: $\langle\vec{u}, \vec{u}\rangle \geq 0$ with $\langle\vec{u}, \vec{u}\rangle=0$ if and only if $\vec{u}=\overrightarrow{0}$

For two vectors, $\vec{u}, \vec{v} \in \mathbb{R}^{n}$, the standard inner product is $\langle\vec{u}, \vec{v}\rangle=\vec{u}^{T} \vec{v}$. We define the norm, or the magnitude, of a vector \vec{v} to be $\|\vec{v}\|=\sqrt{\langle\vec{v}, \vec{v}\rangle}=\sqrt{\vec{v}^{T} \vec{v}}$. For any non-zero vector, we can normalize, i.e., set its magnitude to 1 while preserving its direction, by dividing the vector by its norm $\frac{\vec{v}}{\|\vec{v}\|}$.

Orthogonality and Orthonormality

The inner product lets us define the angle between two vectors through the equation

$$
\begin{equation*}
\langle\vec{u}, \vec{v}\rangle=\|\vec{u}\|\|\vec{v}\| \cos \theta \tag{1}
\end{equation*}
$$

Notice that if the angle θ between two vectors is $\pm 90^{\circ}$, the inner product $\langle\vec{u}, \vec{v}\rangle=0$.
Therefore, we define two vectors \vec{u} and \vec{v} to be orthogonal to each other if $\langle\vec{u}, \vec{v}\rangle=\vec{u}^{T} \vec{v}=0$. A set of vectors is orthogonal if any two vectors in this set are orthogonal to each other.

Furthermore, we define two vectors \vec{u} and \vec{v} to be orthonormal to each other if they are orthogonal to each other and their norms are 1 . A set of vectors is orthonormal if any two vectors in this set are orthogonal to each other and every vector has a norm of 1 . In fact, for any two vectors \vec{u} and \vec{v} in an orthonormal set,

$$
\langle\vec{u}, \vec{v}\rangle=\vec{u}^{T} \vec{v}=\left\{\begin{array}{ll}
1, & \text { if } \vec{u}=\vec{v} \\
0, & \text { otherwise }
\end{array} .\right.
$$

Unitary Matrices

An orthogonal or unitary matrix is a square matrix whose columns are orthonormal with respect to the inner product. To avoid any confusion, we will often refer to these matrices as orthonormal matrices.

$$
U=\left[\begin{array}{lll}
\vec{u}_{1} & \cdots & \vec{u}_{n}
\end{array}\right], \quad \vec{u}_{i}^{T} \vec{u}_{j}= \begin{cases}1, & \text { if } i=j \\
0, & \text { otherwise }\end{cases}
$$

Note that $U^{T} U=U U^{T}=I$, so the inverse of a unitary matrix is its transpose $U^{-1}=U^{T}$.
Since the columns of a unitary matrix are orthonormal vectors, we can interpret these matrices as "rotation" and "reflection" matrices of the standard axes. This also implies that $\|U \vec{v}\|=\|\vec{v}\|$ for any vector \vec{v}.

2 Spectral Theorem

Let A be an $n \times n$ symmetric matrix with real entries. Then the following statements will be true.

1. All eigenvalues of A are real.
2. A has n linearly independent eigenvectors $\in \mathbb{R}^{n}$.
3. A has orthogonal eigenvectors, i.e., $A=V \Lambda V^{-1}=V \Lambda V^{T}$, where Λ is a diagonal matrix and V is an orthonormal matrix. We say that A is orthogonally diagonalizable.

Recall that a matrix A is symmetric if $A=A^{T}$. Furthermore, if A is of the form $B^{T} B$ for some arbitrary matrix B, then all of the eigenvalues of A are non-negative, i.e., $\lambda \geq 0$.
a) Prove the following: All eigenvalues of a symmetric matrix A are real.

Hint: Let (λ, \vec{v}) be an eigenvalue/vector pair. Then $A \vec{v}=\lambda \vec{v}$ and take the complex conjugate and transpose of both sides. Try to show that $\bar{\lambda}=\lambda$.
b) Prove the following: For any symmetric matrix A, any two eigenvectors corresponding to distinct eigenvalues of A are orthogonal.
Hint: Let \vec{v}_{1} and \vec{v}_{2} be eigenvectors of A with eigenvalues $\lambda_{1} \neq \lambda_{2}$.

$$
\begin{aligned}
& A \vec{v}_{1}=\lambda_{1} \vec{v}_{1} \\
& A \vec{v}_{2}=\lambda_{2} \vec{v}_{2}
\end{aligned}
$$

Take the transpose of the second equation and show that $\lambda_{1}\left\langle\vec{v}_{1}, \vec{v}_{2}\right\rangle=\lambda_{2}\left\langle\vec{v}_{1}, \vec{v}_{2}\right\rangle$.
c) Prove the following: For any matrix $A, A^{T} A$ is symmetric and only has non-negative eigenvalues. Hint: Consider the quantity $\|A \vec{v}\|^{2}$. Remember that norms are positive-definite.

3 Outer Products

An outer product \otimes is a function that takes two vectors and outputs a matrix. We define $\vec{x} \otimes \vec{y}=\vec{x} \vec{y}^{T}$.
a) Let $\vec{x}=\left[\begin{array}{c}1 \\ 3 \\ -2\end{array}\right]$ and $\vec{y}=\left[\begin{array}{c}4 \\ 2 \\ -1\end{array}\right]$.
(i) Compute the outer-product $A=\vec{x} \vec{y}^{T}$.
(ii) What is the shape of the matrix A ?
(iii) What is the rank of A ?
b) Let $B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$.
(i) Write B as an outer-product of two vectors \vec{x} and \vec{y}.
(ii) What is the rank of B ?
c) Let $C=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]$.
(i) Write C as a sum of outer-products: $\vec{x} \vec{y}^{T}+\vec{u} \vec{w}^{T}$.
(ii) What is the rank of C ?
d) Let $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
(i) Write D as a sum of outer-products.
(ii) What is the rank of D ?

