This homework is due on Thursday, November 5, 2020, at 10:59PM.

Self-grades are due on Thursday, November 12, 2020, at 10:59PM.

1 SVD I

Find the singular value decomposition of the following matrix (leave all work in exact form, not decimal):

$$A = \begin{bmatrix} 2 & 2\\ 3 & -3 \end{bmatrix}$$

- a) Find the eigenvalues of AA^{\top} and order them from largest to smallest, $\lambda_1 > \lambda_2$.
- b) Find orthonormal eigenvectors \vec{u}_i of AA^{\top} (all eigenvectors are mutually orthogonal and unit length).
- c) Find the singular values $\sigma_i = \sqrt{\lambda_i}$. Find the \vec{v}_i vectors from:

$$A^{\top}\vec{u}_i = \sigma_i \vec{v}_i$$

d) Write out A as a weighted sum of rank-1 matrices:

$$A = \sigma_1 \vec{u}_1 \vec{v}_1^\top + \sigma_2 \vec{u}_2 \vec{v}_2^\top$$

2 Rank 1 Decomposition

In this problem, we will decompose a few images into linear combinations of rank 1 matrices. Remember that outer product of two vectors $\vec{s}\vec{g}^T$ gives a rank 1 matrix. It has rank 1 because clearly, the column span is one-dimensional — multiples of \vec{s} only — and the row span is also one dimensional — multiples of \vec{g}^T only.

For example, if \vec{s} and \vec{g} are two vectors of dimension 5, then $\vec{s}\vec{g}^T$ is given as follows.

$$\vec{s} = \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \end{bmatrix} \qquad \vec{g} = \begin{bmatrix} g_1 \\ g_2 \\ g_3 \\ g_4 \\ g_5 \end{bmatrix}$$
$$\vec{g} = \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \end{bmatrix} \begin{bmatrix} g_1 & g_2 & g_3 & g_4 & g_5 \end{bmatrix} = \begin{bmatrix} s_1g_1 & s_1g_2 & s_1g_3 & s_1g_4 & s_1g_5 \\ s_2g_1 & s_2g_2 & s_2g_3 & s_2g_4 & s_2g_5 \\ s_3g_1 & s_3g_2 & s_3g_3 & s_3g_4 & s_3g_5 \\ s_4g_1 & s_4g_2 & s_4g_3 & s_4g_4 & s_4g_5 \\ s_5g_1 & s_5g_2 & s_5g_3 & s_5g_4 & s_5g_5 \end{bmatrix}$$

a) Consider a standard 8×8 chessboard shown in Figure 1. Assume that black colors represent -1 and that white colors represent 1.

Figure 1: 8×8 chessboard.

Hence, that the chessboard is given by the following 8×8 matrix C_1 :

	-							
<i>C</i> ₁ =	1	-1	1	-1	1	-1	1	-1
	-1	1	-1	1	-1	1	-1	1
	1	-1	1	-1	1	-1	1	-1
	-1	1	-1	1	-1	1	-1	1
	1	-1	1	-1	1	-1	1	-1
	-1	1	-1	1	-1	1	-1	1
	1	-1	1	-1	1	-1	1	-1
	-1	1	-1	1	-1	1	-1	1

Express C_1 **as a linear combination of outer products.** *Hint: In order to determine how many rank 1 matrices you need to combine to represent the matrix, find the rank of the matrix you are trying to represent.*

b) For the same chessboard shown in Figure 1, now assume that black colors represent 0 and that white colors represent 1.

Hence, the chessboard is given by the following 8×8 matrix C_2 :

$$C_2 = \begin{vmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{vmatrix}$$

Express C₂ as a linear combination of outer products.

c) Now consider the Swiss flag shown in Figure 2. Assume that red colors represent 0 and that white colors represent 1.

Figure 2: Swiss flag.

Assume that the Swiss flag is given by the following 5×5 matrix *S*:

$$S = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Furthermore, we know that the Swiss flag can be viewed as a superposition of the following pairs of images:

Figure 3: Pairs of images - Option 1

Figure 4: Pairs of images - Option 2

Express the *S* in two different ways: i) as a linear combination of the outer products inspired by the Option 1 images and ii) as a linear combination of outer products inspired by the Option 2 images.

3 SVD properties

In this question, we look at some properties of SVD. Below we consider a m by n matrix whose SVD writes $A = \sum_{i=1}^{r} \sigma_i \vec{u}_i \vec{v}_i^T$ where r is the rank of the matrix.

a) We know that *A* can also be represented in matrix form as $A = \sum_{i=1}^{r} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{T} = U_{1} S V_{1}^{T}$ where $U_{1} = [\vec{u}_{1}, \vec{u}_{2}, ..., \vec{u}_{r}]$, $S = \text{diag}(\sigma_{1}, \sigma_{2}, ..., \sigma_{r})$, and $V_{1} = [\vec{v}_{1}, \vec{v}_{2}, ..., \vec{v}_{r}]$. Show that $\sum_{i=1}^{r} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{T} = U_{1} S V_{1}^{T}$. Note that the math does not assume any further property for U_{1} and V_{1} than that they are of compatible shape as long as *S* is diagonal.

The full SVD of *A* writes $A = U\Sigma V^T$ where $U = [\vec{u}_1, \vec{u}_2, \dots, \vec{u}_r, \vec{u}_{r+1}, \dots, \vec{u}_m]$ and $V = [\vec{v}_1, \vec{v}_2, \dots, \vec{v}_r, \vec{v}_{r+1}, \dots, \vec{v}_n]$ are orthornormal matrices with the first r columns being the same as those of *U*' and *V*'.

$$\Sigma = \begin{bmatrix} S_{r \times r} & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix}.$$

- b) Suppose $r < \min(m, n)$, what is a basis of the null space of *A*? Prove your answer.
- c) What is the basis of the range of *A*? Prove your answer.
- d) Suppose n = m = r, that is, A is square and full rank. Find the inverse of A in terms of U, Σ , and V.

4 Induced Matrix Norms

Often, the general effect of matrices on their inputs is really hard to predict. To overcome this, we usually try to "bound" the effect a matrix has on input vectors. We will work through a simple case of bounding the output of an $n \times n$ matrix T given that T is diagonalizable and symmetric. We will consider the system

$$\vec{y} = T\vec{x}$$
,

where \vec{x} is the input vector and \vec{y} is the output vector.

- a) Let $U = [\vec{u}_1, \vec{u}_2, ..., \vec{u}_n]$ be a set of orthonormal eigenvectors of the matrix *T*. Decompose the generic input vector \vec{x} into a linear combination of these eigenvectors.
- b) Let the eigenvalues of *T* be $\{\lambda_1, \lambda_2, ..., \lambda_n\}$ with $|\lambda_1| \ge |\lambda_2| \ge ... |\lambda_n|$. If we represent \vec{x} as a linear combination of the eigenvectors of *T*, what is the Euclidean norm of the output vector \vec{y} , $\|\vec{y}\|$?

Hint: You can use the fact that Euclidean norms are preserved with orthonormal transforms.

c) Say you do not know all the eigenvalues of *T*, but you know the largest eigenvalue λ_1 . If the norm $||\vec{x}|| = \alpha$, how big could $||\vec{y}||$ be?

The maximum factor by which a square matrix can grow the norm of a vector is called the induced norm for that matrix. Although we had you do the derivation above for a symmetric matrix *T*, the fact that $||A\vec{x}|| = \sqrt{\vec{x}^T A^T A \vec{x}}$ can be used to show how to generalize this concept of induced norm for general matrices.

5 Closed-Loop Control of SIXT33N

To make our control more robust, we introduce feedback, turning our open-loop controller into a closed-loop controller. In this problem, we derive the closed-loop control scheme you will use to make SIXT33N reliably drive straight.

We introduce $\delta(k) = d_L(k) - d_R(k)$ as the difference in positions between the two wheels. We will consider a proportional control scheme, which introduces a feedback term into our input equation in which we apply gains k_L and k_R to $\delta(k)$ to modify our input at each timestep in an effort to prevent $|\delta(k)|$ from growing without bound. To do this, we will modify our inputs $u_L(k)$ and $u_R(k)$ to be:

$$u_L(k) = \frac{v^* + \beta_L}{\theta_L} - k_L \frac{\delta(k)}{\theta_L}$$
$$u_R(k) = \frac{v^* + \beta_R}{\theta_R} + k_R \frac{\delta(k)}{\theta_R}$$

Substituting into the open-loop equations

$$d_L(k+1) - d_L(k) = \theta_L u_L(k) - \beta_L$$
(1)
$$d_R(k+1) - d_R(k) = \theta_R u_R(k) - \beta_R$$

we obtain:

$$d_L(k+1) - d_L(k) = v^* - k_L \delta(k)$$
(2)
$$d_R(k+1) - d_R(k) = v^* + k_R \delta(k)$$

- a) Let's look a bit more closely at picking k_L and k_R . First, we need to figure out what happens to $\delta(k)$ over time. Find $\delta(k + 1)$ in terms of $\delta(k)$.
- b) Given your work above, what is the eigenvalue of the system defined by $\delta(k)$? For discrete-time systems like our system, $\lambda \in (-1, 1)$ is considered stable. Are $\lambda \in [0, 1)$ and $\lambda \in (-1, 0]$ identical in function for our system? Which one is "better"? (*Hint:* Preventing oscillation is a desired benefit.)

Based on your choice for the range of λ above, how should we set k_L and k_R in the end?

c) Let's re-introduce the model mismatch in order to model environmental discrepancies, disturbances, etc. How does closed-loop control fare under model mismatch? Find $\delta_{ss} = \delta[k \to \infty]$, assuming that $\delta[0] = \delta_0$. What is δ_{ss} ? (To make this easier, you may leave your answer in terms of appropriately defined *c* and λ obtained from an equation in the form of $\delta(k+1) = \delta(k)\lambda + c$.)

Check your work by verifying that you reproduce the equation in part (c) if all model mismatch terms are zero. Is it better than the open-loop model mismatch?

$$d_L(k+1) - d_L(k) = (\theta_L + \Delta \theta_L)u_L(k) - (\beta_L + \Delta \beta_L)$$
$$d_R(k+1) - d_R(k) = (\theta_R + \Delta \theta_R)u_R(k) - (\beta_R + \Delta \beta_R)$$

$$u_L(k) = \frac{v^* + \beta_L}{\theta_L} - k_L \frac{\delta(k)}{\theta_L}$$
$$u_R(k) = \frac{v^* + \beta_R}{\theta_R} + k_R \frac{\delta(k)}{\theta_R}$$

6 Homework Process and Study Group

Citing sources and collaborators are an important part of life, including being a student! We also want to understand what resources you find helpful and how much time homework is taking, so we can change things in the future if possible.

- a) What sources (if any) did you use as you worked through the homework?
- b) **If you worked with someone on this homework, who did you work with?** List names and student ID's. (In case of homework party, you can also just describe the group.)
- c) Roughly how many total hours did you work on this homework?
- d) Do you have any feedback on this homework assignment?