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EE16B
Designing Information 

Devices and Systems II
Lecture 12A

Sampling
Aliasing

Discrete Signals
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Intro

• Last time:
– Interpolation
– Started the sampling theorem

• Today: 
– Sampling theorem
– Aliasing
– Discrete signals
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Sampling and Recovery

• Can we perfectly recover an analog signal from 
its samples?

Analog signal:

Sample:

Interpolate:
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Sampling a sinusoid

• What rate should you be sampling a sinusoid?
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Bandlimitedness

• The sinc function does not contain frequencies 
beyond a certain bandwidth
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Sampling Theorem
•  If f(x) is bandlimited by frequency wmax, then

As long as,

Proof: EE120, EE123
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Examples

• Audio Signals: 
– Can hear up to 18-20KHz
– Sampling 44.1KHz, or 48KHz

• Speech: 500Hz – 3.5KHz
– MSP430 samples at about 2.8KHz. Is that enough?
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Example 1

30
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Example 2
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Example 2
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Example 2

• Sinc interpolation gives:

30

Aliasing of high frequencies 
into lower ones!



EE16B M. Lustig,  EECS UC Berkeley

Aliasing and Phase Reversal

• Highest interpolated frequency will not be higher than π

If  π < w < 2π  and Δ=1, there’s an equivalent 
lower frequency signal with the same samples! 
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Example 2
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Example 3
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Aliasing Demo
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Aliasing in video

https://www.youtube.com/watch?v=cxddi8m_mzk

https://www.youtube.com/watch?v=cxddi8m_mzk
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Aliasing in Images
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Aliasing in MRI

of parallel imaging methods, those that work in the
raw data or k-space domain and those that work in
the image domain. The most common k-space-based
techniques are Generalized Autocalibrating Partially
Parallel Acquisitions (GRAPPA) (44) and Autocalibrat-
ing Reconstruction for Cartesian (ARC) imaging (45),
whereas SENSitivity Encoding (SENSE) (46) is the
most common image-based method. Both techniques
derive their speed advantage by subsampling k-space
such that a reduced number of phase encode steps
are acquired. If the overall extent of k-space is
unchanged but there is a greater spacing between
phase encoding steps, image resolution is maintained
but the phase FOV is reduced. As described above,
reducing the phase FOV can result in phase aliasing
or wrap. In k-space-based parallel imaging techni-
ques, the coil sensitivity information is used to
synthesize the missing lines of k-space so that the
resultant images are free from aliasing, whereas in
the image-based techniques, the coil sensitivity infor-
mation is used to unwrap the images after reconstruc-
tion. One typical artifact that is often seen with

SENSE type reconstruction is shown in Figure 12a,
where phase aliasing was present in the image before
parallel imaging was applied (47). In a standard, i.e.,
nonparallel, imaging acquisition a small amount of
wrap-around at the edges of an image, due to a
reduced phase FOV, can often be tolerated (Fig. 12b).
However, in the case of a SENSE-based acquisition
and reconstruction such phase aliasing appears in
the center of the image and may often cause problems
in diagnosis, particularly if the artifact is subtle. For
this reason, it is especially important to prescribe a
large enough phase FOV, to accommodate the anat-
omy being imaged, whenever SENSE is used.

As described above SENSE parallel imaging imple-
mentations require knowledge of the individual coil spa-
tial sensitivities to unwrap the image. These sensitivity
maps are generally obtained before image acquisition as
part of a calibration acquisition. There is, therefore, an
assumption that the coil sensitivity profile does not
change between acquisition of the calibration data and
the image. However, if the patient or the coils move, the
calibration may be suboptimal and incomplete

Figure 11. Examples of 2D and 3D phase encode aliasing artifacts. a: The FOV in the phase encoding direction is too small
so that the left wrist (arrow) is aliased over the pelvis. b: The same acquisition with a larger field of view, shows the left wrist
(arrow) in its correct location. c,d: Show 3D slab selection phase aliasing artifact. c: Axial image acquired using a 3D gradient
echo technique shows a structure that appears to be within the liver (arrow). d: Image from the bottom slice of the acquisition
in c, shows that the structure overlying the liver was aliasing from the right kidney (arrow). Note that c has higher SNR than
d. e: The coronal single shot fast spin echo image illustrates the coil positioning used for c and d; note that signal intensity
of the upper abdomen is lower than that of the lower abdomen. The coil was positioned too low, accentuating the aliasing of
the right kidney into the liver. n shows the frequency encoding direction. c and d are reproduced with permission from Yang
RK, Roth CG, Ward RJ, et al. Optimizing abdominal MR imaging: approaches to common problems. Radiographics
2010;30:185–199.

280 Graves and Mitchell
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Discrete Time Signals

• Samples of a CT signal: 

• Or, inherently discrete (Examples?)
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Discrete Time Signals

• At their core are “just samples”!

1 2 3 4 5 6 70
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• Unit Impulse

• Unit Step 

Basic Sequences
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Basic Sequences

•Exponential

Bounded unBounded
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Discrete Sinusoids

• To find fundamental period, N
– Find the smallest integers N,K:

or, 

Q: Only if            is rational 

Q: Is y[n] periodic?
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Discrete Sinusoids

• Examples:
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Discrete Sinusoids

Q: Which signal has a higher frequency?
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Discrete Sinusoids

• What’s the lowest discrete frequency?

• What’s the highest discrete frequency?
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Discrete Sinusoids
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Discrete Sinusoids
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Complex Frequencies

• Sinusoids are sums of left and right rotating 
complex exponentials

“Positive” and “Negative” frequencies

Discrete frequencies with period N:



EE16B M. Lustig,  EECS UC Berkeley

Complex Frequencies

• N = 4

• N = 6, neg. freq.


