EE16B Designing Information Devices and Systems II

Lecture 14B Last Lecture

Intro

- Last time:
 - Change of basis
 - Frequency analysis through projections onto complex harmonics
 - Discrete Fourier Transform

 Today – Wrap up DFT How MRI works

Change of Coordinates (Basis)

 We can compute new coordinates by projections onto orthonormal basis vectors

How can we find the frequency of this N=32 length signal?

Project on unit sinusoidal vectors?

Frequency Analysis Through Projections

N-length normalized discrete frequency:

$u_{\omega}[n] = \frac{1}{\sqrt{N}} e^{j\omega n} \qquad 0 \le n < N \qquad 0 \le \omega < 2\pi$

$$= \sum_{n=0}^{N-1} x[n]e^{-j\omega n}$$

Also the DTFT of the finite sequence x

DFT vs DTFT

$$\vec{u}_k = \frac{1}{\sqrt{N}} \begin{bmatrix} e^{j\frac{2\pi k \cdot 0}{N}} \\ e^{j\frac{2\pi k \cdot 1}{N}} \\ \vdots \\ e^{j\frac{2\pi k \cdot (N-1)}{N}} \end{bmatrix}$$

$$X[k] = \vec{u}_k^* \vec{x}$$
$$X[k] = \frac{1}{N-1} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}$$

 $\vec{u}_{\omega} = \frac{1}{\sqrt{N}} \begin{bmatrix} e^{j\omega 0} \\ e^{j\omega 1} \\ \vdots \\ e^{j\omega(N-1)} \end{bmatrix}$

 $X(\omega) = \vec{u}_{u}, \vec{x}$

N-1 $X(\omega) = \sum_{w} x[n]e^{-j\omega n}$ n=0

DFT

 $\vec{u}_{k} = \frac{1}{\sqrt{N}} \begin{bmatrix} e^{j\frac{2\pi k \cdot 0}{N}} \\ e^{j\frac{2\pi k \cdot 1}{N}} \\ \vdots \\ e^{j\frac{2\pi k \cdot (N-1)}{N}} \end{bmatrix} = \frac{1}{\sqrt{N}} \begin{bmatrix} W_{N}^{k \cdot 0} \\ W_{N}^{k \cdot 1} \\ \vdots \\ W_{N}^{k \cdot (N-1)} \end{bmatrix}$ $\Rightarrow X[k] = \vec{u}_k^* \vec{x}$

 \vec{u}_0

DH

• DFT Analysis

X[k]

X[0]

EE16B M. Lustig, EECS UC Berkeley

 $\vec{X} = F^* \vec{x}$

N-1 $\frac{1}{\sqrt{N}} \sum_{n=0}^{\infty} x[n] W_N^{-nk}$

 $\vec{u}_{0}^{*}\vec{x} =$

EE16B M. Lustig, EECS UC Berkeley

 $\vec{u}_1 =$

 $\vec{u}_1^* \vec{x} =$

Example cont

Example

Example

Example

Complexity computing thf DFT

• What's the complexity to compute the DFT?

Exploit structure in W_N^{nk} to speed up! —The Fast Fourier transform (FFT)

A: $O(N \log(N))$

$\vec{X} = \begin{bmatrix} | & | & | & | \\ \vec{u}_0 & \vec{u}_1 & \cdots & \vec{u}_{N-1} \\ | & | & | & | \end{bmatrix}^* \vec{x}$ $\stackrel{\Delta}{=} F^*$

A: Generally O(N²)

MRI vs CT MRI is VERY VERY different from CT

CT

Based on Magnetism No moving parts No ionizing radiation Sensitive to soft tissue Complicated to operate

M. Lustig, EECS UC Berkeley

MRI

Based on X-ray Rapidly moving parts Uses ionizing radiation Less sensitive to soft tissue Easy to operate

How Does MRI Work?

- Magnetic Polarization -- Very strong uniform magnet
- Excitation -- Very powerful RF transmitter
- Acquisition -- Very powerful audio amps

-- Location is encoded by gradient magnetic fields

Polarization

 Protons have a magnetic moment Protons have spins Like rotating magnets

Polarization

- Body has a lot of protons
- magnetization

M. Lustig, EECS UC Berkeley

In a strong magnetic field B0, spins align with B0 giving a net

Polarizing Magnet

- 0.1 to 12 Tesla
- 0.5 to 3 T common
- 1 T is 10,000 Gauss
- Earth's field is 0.5G
- Typically a superconducting magnet

Typical MRI Scanner

Polarizaion

Free Precession

- Much like a spinning top
- Frequency proportional to the field
- f = 127MhZ @ 3T

M. Lustig, EECS UC Berkeley

MIT physics demos

EE16B M. Lustig, EECS UC Berkeley

$\begin{array}{c|ccc} \gamma B_0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \left[\begin{array}{c} M_x(\vec{r},t) \\ M_y(\vec{r},t) \\ M_z(\vec{r},t) \end{array} \right]$

Free Precession

Precession induces magnetic flux Flux induces voltage in a coil

M. Lustig, EECS UC Berkeley

 $\vec{y}(t) = \int_{\vec{R}} CM(\vec{r}, t) d\vec{r}$ $C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Signal

isk space re	emains fo	r recording 761 hours and 21 minutes	
oject rate:	8192	Cursor: 0:00.000000 min:sec [Snap-To Off]	

courtesy Boris Keil, Larry Wald, MGH

Intro to MRI - The NMR signal

- Signal from ¹H (mostly water)
- Magnetic field \Rightarrow Magnetization
- Radio frequency \Rightarrow Excitation
- Frequency \propto Magnetic field

Intro to MRI - The NMR signal

- Signal from ¹H (mostly water)
- Magnetic field \Rightarrow Magnetization
- Radio frequency \Rightarrow Excitation
- Frequency \propto Magnetic field

Intro to MRI - Imaging

• B_0 Missing spatial information

Intro to MRI - Imaging

- B₀ Missing spatial information
- Add gradient field, G

Intro to MRI - Imaging

- B₀ Missing spatial information
- Add gradient field, G
- Mapping: spatial position \Rightarrow frequency

MRI Pulse Sequence

EE16B M. Lustig, EECS UC Berkeley

Repeat n times rate = TR seconds

MR Imaging

magnitude k-space (Raw Data)

Discrete Fourier transform

M. Lustig, EECS UC Berkeley

Fourier

Image

Video courtesy Brian Hargreaves

MRI is all about contrast.....

Relaxation

 $\begin{bmatrix} \dot{M}_x(\vec{r},t) \\ \dot{M}_y(\vec{r},t) \\ \dot{M}_z(\vec{r},t) \end{bmatrix} = \begin{bmatrix} -\frac{1}{T_2} & 0 & 0 \\ 0 & -\frac{1}{T_2} & 0 \\ 0 & 0 & -\frac{1}{T_1} \end{bmatrix} \begin{bmatrix} M_x(\vec{r},t) \\ M_y(\vec{r},t) \\ M_z(\vec{r},t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{T_1} \end{bmatrix} M_0(\vec{r})$

The Toilette Analogy (©2009 Al Macovski)

• Excitation = Flush

- Dynamics:
 - Water drains = signal decays, equivalent to T2
 - Tank refills = Magn. recovers, equivalent to T1
- Observed signal = water in the bowl
- Different toilettes = different tissues

to T2 o T1

he bowl tissues

The Toilette Analogy (©2009 Al Macovski)

T2 Weighting

Graphics courtesy of Brian Hargreaves

The Toilette Analogy (©2009 Al Macovski)

T1 Weighting

Graphics courtesy of Brian Hargreaves

.... House Prefers T2

You -- Get cervical, thoracic and lumbar T2 weighted Fast Spin-Echo MRIs

Summary

- MRI is about the interactions of magnetic fields with Nuclear spins
- Governed by a linear dynamical system! Dynamics result in rotations, which frequency depend
- on position
 - Decode via DFT!
- Damping causes exponential relaxation which we use to set the image contrast!
- To maximize signal in antenna we use LC resonance!

Ramsey Mardin Head Admin ramseymardini@

Mauricio Bustamante Discussion, Content mauricio_bustamante@

Nick Nolar Discussion, Conte nick.nolan@

Ashwin Vangipuram Discussion avangipuram@

Maxwell Chen Head Admin maxhchen@

Mikaela Frichte Head Lab mfrichtel@

Steven Lu Head Lab steven1@

Archit Gupta Discussion, Content architgupta@

Fangda Gu Discussion, Content gfd18@

Taejin Hwang Discussion, Content

Son Tran Discussion sontran@

Rafael Calleja Lab rafael.calleja@

Marie Barr-Ramsey Discussion mariebarr@

Elizabeth Wang Lab elizabethtwang@

Justin Yu Discussion justinvyu@

Priyans Nishithkumar Desai Lab priyansdesai@

Readers: Gavin Liu, Alex Feng, Aneesh Nathani

Lab Assistants: Parth Patel, Sean Chen, Tom Xie, Martin Hodde, Michelle Boulos, Darby Clement, Christine Lou, Yashovardhan Raniwala, Risheek Pingili, Eric Yang, Christabella Annalicia, Yuki Ito, Megan Zeng, Christopher Lung, Nada Jamalallail, Arjun Bhorkar

