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State Space Representation of Dynamical Systems

State variables are internal variables that fully represent the state of
a dynamical system at a given time. In previous lectures we used
capacitor voltages and inductor currents as state variables of a cir-
cuit, and wrote differential equations that tell us how these variables
evolve over time. The vector of such variables is called a state vec-
tor and the vector differential equation governing their evolution is
called a state model.

Example 1: As a familiar example consider the RLC circuit depicted
on the right where vin denotes the input voltage.

+ + +- - -

+ -

R L C

vR vL vC

vin

iL

Since the capacitor and inductor satisfy the relations

C
dvC(t)

dt
= iC(t) (1)

L
diL(t)

dt
= vL(t), (2)

we select vC and iL as the state variables. We then eliminate iC from
(1) by noting that iC = iL, and eliminate vL from (2) using KVL
(vL + vC + vR = vin), Ohm’s Law (vR = RiR), and iR = iL:

vL = −vC − vR + vin = −vC − RiL + vin. (3)

Then the state model becomes
d
dt

vC(t) =
1
C

iL(t)

d
dt

iL(t) =
1
L
(−vC(t)− RiL(t) + vin(t)) .

(4)

In a state model the left-hand side consists of derivatives of the state
variables and the right-hand side depends only on the state variables
and external inputs (vin in this example). Other variables appearing
in the equations, such as vL in (2), must be eliminated by expressing
them in terms of the state and input variables, as we did in (3).

We say that a state model is linear if the right-hand side depends
linearly on the state and input variables, as in (4) above. For a linear
model the right-hand side can be written as a matrix multiplying the
state vector, plus another matrix multiplying the input. Thus, for (4),

d
dt

[
vC(t)
iL(t)

]
=

[
0 1/C

−1/L −R/L

] [
vC(t)
iL(t)

]
+

[
0

1/L

]
vin(t). (5)
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Most physical systems, however, are nonlinear. We have already seen
nonlinear voltage-current curves for transistors2. The next example 2 However, since we focused on the

low-voltage region where a linear
approximation was adequate, we used
linear differential equations.

studies another nonlinear circuit element, the tunnel diode.

Example 2: A tunnel diode is characterized by a voltage-current
curve where, for a certain voltage range, the current decreases with
increasing voltage. This is due to a quantum mechanical effect called
tunneling.

i +
v
−

i

v

i = g(v)

R

+ vL −

iL

+
vin
−

L

C

iC
+
vC = vD
−

iD

Now consider the circuit on the right. We again use the state vari-
ables iL and vC, and start building a state model using the relations

C
dvC(t)

dt
= iC(t) (6)

L
diL(t)

dt
= vL(t). (7)

The next task is to rewrite the right-hand side in terms of state
variables iL and vC, and input vin. To do so note from KCL that
iC = iL − iD and subtitute iD = g(vD) = g(VC), since vD = vC.
Thus, (6) becomes

C
dvC(t)

dt
= iL(t)− g(vC(t)), (8)

where only the state variables iL and vC appear on the right-hand
side. Likewise, using KVL, we substitute vL = −vC − RiL + vin in (7)
and obtain

L
diL(t)

dt
= −vC(t)− RiL(t) + vin(t). (9)

Dividing both sides of (8) by C and both sides of (9) by L, we obtain
the state model:

d
dt

vC(t) =
1
C

iL(t)−
1
C

g(vC(t))

d
dt

iL(t) =
1
L
(−vC(t)− RiL(t) + vin(t)) .

(10)

Since g is a nonlinear function, (10) is a nonlinear state model and
can’t be written in the matrix-vector form (5) we used in Example 1

to represent the linear model (4).
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General form of State Equations

A general state model with n states and m inputs has the form

d
dt

x1(t) = f1(x1(t), · · · , xn(t), u1(t), · · · , um(t))

d
dt

x2(t) = f2(x1(t), · · · , xn(t), u1(t), · · · , um(t))

... (11)
d
dt

xn(t) = fn(x1(t), · · · , xn(t), u1(t), · · · , um(t)),

where f1, · · · , fn are functions of the state and input variables.

In Examples 1 and 2 above we had n = 2 states x1 = vC and x2 = iL,
and a single (m = 1) input u = vin. Thus (10) has the form above with

f1(x1, x2) =
1
C

x2 −
1
C

g(x1), f2(x1, x2, u) =
1
L
(−x1 − Rx2 + u) .

We will henceforth write (11) compactly as

d
dt
~x(t) = f (~x(t),~u(t)) (12)

where

~x =


x1

x2
...

xn

 , ~u =


u1
...

um

 , f (~x,~u) =


f1(~x,~u)
f2(~x,~u)

...
fn(~x,~u)

 .

The state model (11) is linear if for each i = 1, . . . , n, the function fi

has the form

fi(x1, · · · , xn, u1, · · · , um) = ai1x1 + · · ·+ ainxn + bi1u1 + · · ·+ bimum,

where ai1, · · · , ain, bi1, · · · , bim are coefficients. In this case we can
write (12) in the matrix-vector form

d
dt
~x(t) = A~x(t) + B~u(t), (13)

where A is a n × n matrix and B is a n × m matrix. The ith column of
A consists of the coefficients ai1, · · · , ain and ith column of B consists
of bi1, · · · , bim. If there is only one input then B is n × 1, that is a
column vector, and we may write~b instead of B:

d
dt
~x(t) = A~x(t) +~bu(t).

For example, (5) is of this form with

A =

[
0 1/C

−1/L −R/L

]
, ~b =

[
0

1/L

]
.
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In this module of the course we broaden our scope beyond circuits
and analyze other dynamical systems, such as mechanical systems,
again using state models. In circuit analysis we selected the state
variables to be the inductor currents and capacitor voltages, as these
variables are associated with the energy stored in these elements.
Likewise, in modeling mechanical systems it is customary to select
positions and velocities as the state variables, since the former is
associated with potential energy and the latter with kinetic energy.

Example 3: The motion of the pendulum depicted on the right is
governed by the differential equation

θ

`

mg

mg sin θ
m`

d2θ(t)
dt2 = −k`

dθ(t)
dt

− mg sin θ(t) (14)

where the left hand side is mass×accelaration in the tangential di-
rection, and the right hand side is total force acting in that direction,
including friction and the tangential component of the gravitational
force.

To bring this second order differential equation to state space form
we define the state variables to be the angle and angular velocity:

x1(t) := θ(t) x2(t) :=
dθ(t)

dt
,

and note that they satisfy

d
dt

x1(t) = x2(t)

d
dt

x2(t) = − k
m

x2(t)−
g
`

sin x1(t).
(15)

The first equation here follows from the definition of x2(t) as the
angular velocity, and the second equation follows from (14).

Here we did not consider external forces that could act as inputs, so
the equations (15) have the form (12) with the input omitted:

f (~x) =

[
x2

− k
m x2 − g

` sin x1

]
. (16)

Equilibrium States

For a system without inputs, d
dt~x(t) = f (~x(t)), the solutions of the

static equation
f (~x) = 0

are called equilibrium points. If we pick an equilibrium point ~x∗ as the
initial state at t0, then

d
dt
~x(t) = f (~x∗) = 0
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for all t ≥ t0, therefore the state remains at ~x∗ in the future:

~x(t) = ~x∗ t ≥ t0.

Example 3 revisited: We can find the equilibrium points for the
pendulum example above by solving the equation

f (~x) =

[
x2

− k
m x2 − g

` sin x1

]
= 0.

This consists of two equations,

x2 = 0, − k
m

x2 −
g
`

sin x1 = 0,

which have two distinct solutions:

x1 = 0, x2 = 0,

that is the downward pointing position of the pendulum, and

x1 = π, x2 = 0,

which is the upright position3. As this example illustrates, a system 3 Other solutions, such as (x1, x2) =
(2π, 0), or (x1, x2) = (3π, 0) are
identical to one of the two equilibria
already described.

may have more than one equilibrium. We will see later that the up-
right position is unstable, meaning that the pendulum would diverge
from this equilibrium when slightly perturbed. In contrast the down-
ward position is stable, because the pendulum would return to this
position after some oscillations with the help of the friction term.
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State Space Models Continued

In the last lecture we considered a general state model of the form

d
dt

x1(t) = f1(x1(t), · · · , xn(t), u1(t), · · · , um(t))

d
dt

x2(t) = f2(x1(t), · · · , xn(t), u1(t), · · · , um(t))

... (1)
d
dt

xn(t) = fn(x1(t), · · · , xn(t), u1(t), · · · , um(t)),

and rewrote it compactly as

d
dt
~x(t) = f (~x(t),~u(t)). (2)

When the system (2) is linear we write it in the matrix-vector form

d
dt
~x(t) = A~x(t) + B~u(t), (3)

where A is a n× n matrix and B is a n×m matrix.

Equilibrium States

Recall that, for a system without inputs, d
dt~x(t) = f (~x(t)), the solu-

tions of the static equation

f (~x) = 0

are called equilibrium points. We can extend the definition of an equi-
librium to systems with inputs, assuming that a constant input ~u is
applied instead of a time-varying one. In this case ~x is an equilibrium
point if it satisfies

f (~x,~u) = 0, (4)

where the solution depends on the constant input ~u applied.

For linear systems (3) we find equilibrium points by solving for ~x in

A~x + B~u = 0, (5)

with ~u as a given constant. If A is invertible each constant input ~u
produces a unique equilibrium.
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When A is singular, there may be a continuum of infinitely many
equilibrium points (e.g., with ~u = 0, every point in the null space of A
is an equilibrium point) or there may be no equilibrium points, which
happens when B~u is not in the range space of A.

Note that multiple isolated equilibrium points – such as those in
the pendulum example – can’t occur in linear systems, since (5) has
either a single solution, no solution, or a continuum of infinitely
many solutions. Therefore, multiple isolated equilibria can arise only
in nonlinear systems.

Example 1: In the last lecture we discussed the circuit on the right
and obtained the state model:

d
dt

vC(t) =
1
C

iL(t)−
1
C

g(vC(t))

d
dt

iL(t) =
1
L
(−vC(t)− RiL(t) + vin(t)) ,

(6)

where g is a nonlinear function representing the tunnel diode’s
voltage-current characteristics (see figure below). R

+ vL −

iL

+
vin
−

L

C

iC
+
vC = vD
−

iD

To find the equilibrium points we set the left-hand side of (6) to zero
and solve for vC and iL:

1
C

iL −
1
C

g(vC) = 0

1
L
(−vC − RiL + vin) = 0.

It follows from these two equations that we can find the equilibrium
points by superimposing the curves

iL = g(vC) and iL =
vin − vC

R
, (7)

and finding their intersections. The figure below shows the case
where there are three equilibrium points.

iL

vC

iL = g(vC)iL = vin−vC
R

Depending on the values of the constants vin and R, it is also possible
to have only one or only two equilibrium points: imagine raising the
orange line (i.e., increasing vin) until the two intersections on the left
collapse into one, and then disappear.
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To gain further insight into equilibrium states of circuits, recall that
we use capacitor voltages and inductor currents as state variables.
Thus, to find equilibrium points, we must solve the circuit equations
with the time derivatives of capacitor voltages and inductor currents
set to zero. Since C d

dt vC(t) = iC(t) and L d
dt iL(t) = vL(t), this means

setting the capacitor currents and inductor voltages to zero. Thus, at
equilibrium the capacitor acts like an open circuit and the inductor
like a short circuit.

R

iL

+
vin
−

+
vC
−

The figure on the right shows the tunnel diode circuit, with the in-
ductor treated as short circuit and capacitor as open circuit. As an
exercise show that iL and vC in this circuit indeed satisfy the equilib-
rium equations (7).

Linearization

Linear models are advantageous because their solutions can be found
analytically. The methods applicable to nonlinear models are limited;
therefore it is common practice to approximate a nonlinear model
with a linear one that is valid around an equilibrium state.

x
x∗

y y = f (x)

y = f (x∗)
+f ′(x∗)(x− x∗)

Recall that the Taylor approximation of a differentiable function f
around a point x∗ is:

f (x) ≈ f (x∗) + ∇ f (x)|x=x∗ (x− x∗),

as illustrated on the right for a scalar-valued function of a single
variable. When f (~x) is a vector of n functions f1, · · · , fn as in our
state models, ∇ f (~x) is interpreted as the n × n matrix of partial
derivatives:

∇ f (x1, . . . , xn) =


∂ f1(x1,...,xn)

∂x1

∂ f1(x1,...,xn)
∂x2

· · · ∂ f1(x1,...,xn)
∂xn

∂ f2(x1,...,xn)
∂x1

∂ f2(x1,...,xn)
∂x2

· · · ∂ f2(x1,...,xn)
∂xn

...
...

...
∂ fn(x1,...,xn)

∂x1

∂ fn(x1,...,xn)
∂x2

· · · ∂ fn(x1,...,xn)
∂xn

 .

We linearize nonlinear state models by applying this approximation
around an equilibrium state. Let ~x∗ be an equilbrium for the system

d
dt
~x(t) = f (~x(t)), (8)

that is f (~x∗) = 0, and define the deviation of ~x(t) from ~x∗ as:

x̃(t) := ~x(t)−~x∗. (9)
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Then we see that

d
dt

x̃(t) =
d
dt
~x(t)− d

dt
~x∗

=
d
dt
~x(t) = f (~x(t)) = f (~x∗ + x̃(t))

≈ f (~x∗) + ∇ f (~x)|~x=~x∗ x̃(t), (10)

where the second equality follows because ~x∗ is constant and, thus,
its derivative is zero. Substituting f (~x∗) = 0 in (10) and defining

A , ∇ f (~x)|~x=~x∗ (11)

we obtain the linearization of (8) around the equilibrium ~x∗ as:

d
dt

x̃(t) ≈ Ax̃(t).

Example 2: Recall the pendulum model from the previous lecture:

dx1(t)
dt

= x2(t)

dx2(t)
dt

= − k
m

x2(t)−
g
`

sin x1(t)
(12)

where

x1(t) := θ(t) and x2(t) :=
dθ(t)

dt
.

θ

`

mg

mg sin θ

The two distinct equilibrium points are the downward position:

x1 = 0, x2 = 0, (13)

and the upright position:

x1 = π, x2 = 0. (14)

Since the entries of f (~x) are f1(~x) = x2 and f2(~x) = − k
m x2 − g

` sin x1,
we have

∇ f (~x) =

[
∂ f1(x1,x2)

∂x1

∂ f1(x1,x2)
∂x2

∂ f2(x1,x2)
∂x1

∂ f2(x1,x2)
∂x2

]
=

[
0 1

− g
` cos x1

−k
m

]
.

By evaluating this matrix at (13) and (14), we obtain the linearization
around the respective equilibrium point:

Adown =

[
0 1
− g

`
−k
m

]
Aup =

[
0 1
g
`

−k
m

]
. (15)

As an exercise show that Aup has an eigenvalue with positive real
part. We will see later that the presence of an eigenvalue with posi-
tive real part implies instability of the respective equilibrium state. In
contrast Adown has eigenvalues with negative real parts, indicating
stability of the downward position.
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Linearization and Discrete-Time Systems

Linearization with Inputs

In the last lecture we considered nonlinear systems with no inputs
and linearized them by applying a Taylor approximation around an
equilibrium. We can also apply linearization to systems with inputs,

d
dt
~x(t) = f (~x(t),~u(t)),

around an equilibrium ~x∗ maintained by a constant input ~u∗ that
satisfies f (~x∗,~u∗) = 0.

Define the perturbation variables x̃(t) and ũ(t) as:

x̃(t) := ~x(t)−~x∗, ũ(t) := ~u(t)− ~u∗. (1)

Then,

d
dt

x̃(t) =
d
dt
~x(t)− d

dt
~x∗

=
d
dt
~x(t) = f (~x(t),~u(t)) = f (~x∗ + x̃(t),~u∗ + ũ(t))

≈ f (~x∗,~u∗) +∇x f (~x,~u)|~x∗ ,~u∗ x̃(t) +∇u f (~x,~u)|~x∗ ,~u∗ ũ(t) (2)

where

∇x f (~x,~u) :=


∂ f1(~x,~u)

∂x1

∂ f1(~x,~u)
∂x2

· · · ∂ f1((~x,~u)
∂xn

∂ f2(~x,~u)
∂x1

∂ f2(~x,~u)
∂x2

· · · ∂ f2((~x,~u)
∂xn

...
...

...
∂ fn(~x,~u)

∂x1

∂ fn(~x,~u)
∂x2

· · · ∂ fn(~x,~u)
∂xn



∇u f (~x,~u) :=


∂ f1(~x,~u)

∂u1

∂ f1(~x,~u)
∂u2

· · · ∂ f1((~x,~u)
∂um

∂ f2(~x,~u)
∂u1

∂ f2(~x,~u)
∂u2

· · · ∂ f2((~x,~u)
∂um

...
...

...
∂ fn(~x,~u)

∂u1

∂ fn(~x,~u)
∂u2

· · · ∂ fn(~x,~u)
∂um

 .

Substituting f (~x∗,~u∗) = 0 in (2) and defining

A := ∇x f (~x,~u)|~x∗ ,~u∗ B := ∇u f (~x,~u)|~x∗ ,~u∗ (3)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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we obtain the linearization:

d
dt

x̃(t) ≈ Ax̃(t) + Bũ(t).

Example 1: The velocity v(t) of a vehicle is governed by

M
d
dt

v(t) = −1
2

ρac v(t)2 +
1
R

u(t) (4)

where u(t) is the wheel torque, M is vehicle mass, ρ is air density, a is
vehicle area, c is drag coefficient, and R is wheel radius. Note that we
can maintain the velocity at a desired value v∗ if we apply the torque

u∗ =
R
2

ρac v∗2,

which counterbalances the drag force at that velocity. We rewrite the
model (4) as d

dt v(t) = f (v(t), u(t)), where

f (v, u) = − 1
2M

ρac v2 +
1

RM
u.

Then the linearized dynamics for the perturbation ṽ(t) = v(t)− v∗ is

d
dt

ṽ(t) = λṽ(t) + bũ(t), (5)

where ũ(t) = u(t)− u∗,

λ =
∂ f (v, u)

∂v

∣∣∣∣
v∗ ,u∗

= − 1
M

ρacv∗, b =
∂ f (v, u)

∂u

∣∣∣∣
v∗ ,u∗

=
1

RM
.

Here we used the letters λ and b instead of A and B to emphasize
that they are scalars. Note that if we apply u(t) = u∗, that is ũ(t) = 0,
then the solution of the scalar differential equation (5) is

ṽ(t) = ṽ(0)eλt,

which converges to 0 since λ < 0. This means that if v(t) is perturbed
from v∗, it will return2 to v∗. Equilibrium points with this property 2 The rate of convergence depends on

λ. For a typical sedan at v∗ = 29 m/s
(≈ 65 mph) we would get λ ≈ −0.01
sec−1 with parameters M = 1700 kg,
a = 2.6 m2, ρ = 1.2 kg/m3, c = 0.2.

are called stable, a concept we will study in detail later.

Example 2: In previous lectures we discussed the tunnel diode cir-
cuit on the right and obtained the state model:

d
dt

vC(t) =
1
C

iL(t)−
1
C

g(vC(t))

d
dt

iL(t) =
1
L
(−vC(t)− RiL(t) + vin(t)) ,

(6)

R

+ vL −

iL

+
vin
−

L

C

iC
+
vC = vD
−

iD

where g is a nonlinear function representing the tunnel diode’s
voltage-current characteristics (see figure below). We also showed
that the equilibrium points are the intersections of the curves

iL = g(vC) and iL =
vin − vC

R
. (7)
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iL

vC

iL = g(vC)iL = vin−vC
R

Let v∗in be a constant input voltage and let (v∗C, i∗L) denote one of the
resulting equilibrium states, that is one of the intersections of the two
curves above. Since the right-hand side of (6) has the form

f (vC, iL, vin) =

[
f1(vC, iL, vin)

f2(vC, iL, vin)

]
=

[
1
C iL − 1

C g(vC)
1
L (−vC − RiL + vin)

]
,

the matrices A and B in (3) are:

A =

[
∂ f1(vC ,iL ,vin)

∂vC

∂ f1(vC ,iL ,vin)
∂iL

∂ f2(vC ,iL ,vin)
∂vC

∂ f2(vC ,iL ,vin)
∂iL

]∣∣∣∣∣
(v∗C ,i∗L)

=

[
−1
C g′(v∗C)

1
C

−1
L

−R
L

]

B =

[
∂ f1(vC ,iL ,vin)

∂vin
∂ f2(vC ,iL ,vin)

∂vin

]∣∣∣∣∣
(v∗C ,i∗L)

=

[
0
1
L

]
.

Discrete-Time Systems

In a discrete-time system, the state vector ~x(t) evolves according to a
difference equation rather than a differential equation:

~x(t + 1) = f (~x(t),~u(t)) t = 0, 1, 2, . . . (8)

Here f (~x,~u) is a function that gives the state vector at the next time
instant based on the present values of the states and inputs.

As in the continuous-time case, when f (~x,~u) ∈ Rn is linear in ~x ∈ Rn

and ~u ∈ Rm, we can rewrite it in the form

f (~x,~u) = A~x + B~u

where A is n× n and B is n×m. The state model is then

~x(t + 1) = A~x(t) + B~u(t). (9)

Example 3: Let s(t) denote the inventory of a manufacturer at the
start of the t-th business day. The inventory at the start of the next
day, s(t + 1), is the sum of s(t) and the goods g(t) manufactured,
minus the goods u1(t) sold on day t. Assuming it takes a day to do
the manufacturing, the amount of goods g(t) manufactured is equal
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to the raw material available the previous day, r(t − 1). The raw
material r(t) is equal to the order placed the previous day, u2(t− 1),
assuming it takes a day for the order to arrive.

The state variables s(t), g(t), r(t), thus evolve according to the model

s(t + 1) = s(t) + g(t)− u1(t)

g(t + 1) = r(t)

r(t + 1) = u2(t),

(10)

where u1 and u2 are two distinct inputs, one representing the cus-
tomer demand and the other the manufacturer’s raw material order.

Note that this system is linear, and we can write (10) as:s(t + 1)
g(t + 1)
r(t + 1)


︸ ︷︷ ︸
~x(t + 1)

=

1 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

A

s(t)
g(t)
r(t)


︸ ︷︷ ︸
~x(t)

+

−1 0
0 0
0 1


︸ ︷︷ ︸

B

[
u1(t)
u2(t)

]
︸ ︷︷ ︸
~u(t)

.

Example 4: Let p(t) be the number of EECS professors in a country
in year t, and let r(t) be the number of industry researchers with a
PhD degree. A fraction, γ, of the PhDs become professors themselves
and the rest become industry researchers. A fraction, δ, in each pro-
fession leaves the field every year due to retirement or other reasons.

Each professor graduates, on average, u(t) PhD students per year. We
treat this number as a control input because it can be manipulated
by the government using research funding. This means there will be
p(t)u(t) new PhDs in year t, and γp(t)u(t) new professors. The state
model is then

p(t + 1) = (1− δ)p(t) + γp(t)u(t)

r(t + 1) = (1− δ)r(t) + (1− γ)p(t)u(t).
(11)

Note that this system is nonlinear due to the product of the state
variable p with the input u. �

When the input ~u(t) in (8) is a constant vector ~u∗, the equilibrium
points are obtained by solving for ~x in the equation3: 3 Note that the equilibrium condition

(12) in discrete time differs from the
continuous time condition 0 = f (~x,~u∗).~x = f (~x,~u∗). (12)

If ~x∗ satisfies this equation and we start with the initial condition
~x∗, the next state is f (~x∗,~u∗), which is again ~x∗. The same argument
applies to subsequent time instants, so ~x(t) remains at ~x∗.

For the linear system (9) the equilibrium condition (12) becomes:

~x = A~x + B~u∗, or, equivalently (I − A)~x = B~u∗.
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Discrete-Time Systems and Discretization

Recall that in a discrete-time system, the state vector ~x(t) evolves
according to a difference equation rather than a differential equation:

~x(t + 1) = f (~x(t),~u(t)) t = 0, 1, 2, . . . (1)

Here f (~x,~u) is a function that gives the state vector at the next time
instant based on the present values of the states and inputs.

As in the continuous-time case, when f (~x,~u) ∈ Rn is linear in ~x ∈ Rn

and ~u ∈ Rm, we can rewrite it in the form

f (~x,~u) = A~x + B~u

where A is n× n and B is n×m. The state model is then

~x(t + 1) = A~x(t) + B~u(t). (2)

When the input ~u(t) in (1) is a constant vector ~u∗, the equilibrium
points are obtained by solving for ~x in the equation2: 2 Note that the equilibrium condition

(3) in discrete time differs from the
continuous time condition 0 = f (~x,~u∗).~x = f (~x,~u∗). (3)

If ~x∗ satisfies this equation and we start with the initial condition
~x∗, the next state is f (~x∗,~u∗), which is again ~x∗. The same argument
applies to subsequent time instants, so ~x(t) remains at ~x∗.

For the linear system (2) the equilibrium condition (3) becomes:

~x = A~x + B~u∗, or, equivalently (I − A)~x = B~u∗.

Linearization for nonlinear discrete-time systems is performed simi-
larly to continuous-time. The perturbation variables x̃(t) := ~x(t)−~x∗

and ũ(t) := ~u(t)− ~u∗ satisfy:

x̃(t + 1) = ~x(t + 1)−~x∗ = f (~x(t),~u(t))−~x∗

≈ f (~x∗,~u∗) +∇x f (~x,~u)|~x∗ ,~u∗ x̃(t) +∇u f (~x,~u)|~x∗ ,~u∗ ũ(t)−~x∗.

Substituting f (~x∗,~u∗) − ~x∗ = 0, which follows because ~x∗ is an
equilibrium, we get

x̃(t + 1) ≈ Ax̃(t) + Bũ(t)

where A =∇x f (~x,~u)|~x∗ ,~u∗ and B =∇u f (~x,~u)|~x∗ ,~u∗ .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Changing State Variables

Given the state vector ~x ∈ Rn any transformation of the form

~z := T~x, (4)

where T is a n × n invertible matrix, defines new variables zi, i =

1, . . . , n, as a linear combination of the original variables x1, . . . , xn.

To see how this change of variables affects the state equation

~x(t + 1) = A~x(t) + B~u(t),

note that
~z(t + 1) = T~x(t + 1) = TA~x(t) + TB~u(t)

and substitute ~x = T−1~z in the right hand side to obtain:

~z(t + 1) = TAT−1~z(t) + TB~u(t).

Thus the original A and B matrices are replaced with:

Anew = TAT−1, Bnew = TB. (5)

The same change of variables brings the continuous-time system

d
dt
~x(t) = A~x(t) + B~u(t)

to the form
d
dt
~z(t) = Anew~z(t) + Bnew~u(t)

as depicted below.

T−1T T−1T

~x

~z

A

Anew

~u
B

Bnew

d
dt~x

d
dt~z

We use particular choices of T to obtain special forms of Anew and
Bnew that make the analysis easier. For example, we saw in Lecture
3A that we can make Anew diagonal if the n × n matrix A has n
independent eigenvectors ~v1, · · · ,~vn. This is because the matrix V =

[~v1 · · ·~vn] satisfies

AV = [A~v1 · · · A~vn] = [λ1~v1 · · · λn~vn] = [~v1 · · ·~vn]︸ ︷︷ ︸
= V


λ1

. . .
λn


︸ ︷︷ ︸

=: Λ

,
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therefore V−1 AV = Λ. This means that the choice

T = V−1

gives Anew = TAT−1 = Λ, which is diagonal.

Digital Control

In upcoming lectures we will be designing the input signal ~u of a
continuous-time system

d
dt
~x(t) = A~x(t) + B~u(t) (6)

to ensure that the solution ~x(t) meets requirements, such as reaching
a target state in a given amount of time.

The input signal is typically generated digitally in a computer, by
using measurements of ~x(t) sampled every T units of time. Thus the
computer receives a discrete sequence

~x(0),~x(T),~x(2T), · · ·

as shown in the figure below. We use the notation

~xd(k) := ~x(kT) (7)

where the subscript ’d’ stands for ‘discrete’, so that we can represent
the samples ~x(0),~x(T),~x(2T), · · · as a discrete-time signal

~xd(0),~xd(1),~xd(2), · · ·

x(t)xd(1)
xd(3)

T 2T 3T 4T 5T · · ·
t

Using this sequence an appropriate control algorithm generates in-
puts to the system, again as a discrete sequence

~ud(0),~ud(1),~ud(2), . . .

However, since the system (6) admits only continuous-time inputs,
this sequence must be converted to continuous-time. This is typically
done with a zero-order hold device that keeps ~u(t) constant at ~ud(0) in
the interval t ∈ [0, T), at ~ud(1) for t ∈ [T, 2T), and so on. Therefore,

~u(t) = ~ud(k) t ∈ [kT, (k + 1)T), (8)
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which has a staircase shape as shown below.

u(t)ud(0)
ud(2)

T 2T 3T 4T 5T · · ·
t

The overall control scheme is illustrated below where the D/C
(discrete-to-control) block represents zero-order hold and the C/D
(continuous-to-discrete) block represents sampling.

cont.-time system
d
dt~x = A~x + B~u

~x(t)~u(t)
D/C C/D

~ud(0),~ud(1),~ud(2), · · · ~xd(0),~xd(1),~xd(2), · · ·

controller

Discretization

From the viewpoint of the controller, the system combined with D/C
and C/D blocks (dashed box in the figure above) receives a discrete
input sequence ~ud(k) and generates a discrete state sequence ~xd(k)
that consists of snapshots of ~x(t).

We now wish to derive a discrete-time model

~xd(k + 1) = Ad~xd(k) + Bd~ud(k) (9)

that describes how the state evolves from one snapshot to the next.
That is, we want (9) to return the next sample of the continuous-time
system (6) when the input ~u(t) is constant in between the samples.

To see how such a discrete-time model can be derived, first assume
the continuous-time system has a single state and single input:

d
dt

x(t) = λx(t) + bu(t). (10)

Since the value of x(t) at t = kT is xd(k), the solution of the scalar
differential equation above with initial time kT is

x(t) = eλ(t−kT)xd(k) +
∫ t

kT
eλ(t−τ)bu(τ)dτ.
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We also know that the input u(t) from t = kT to t = kT + T is the
constant ud(k). Thus, the solution at time t = kT + T is

x(kT + T) = eλTxd(k) +
∫ kT+T

kT
eλ(kT+T−τ)bud(k)dτ.

Substituting x(kT + T) = xd(k + 1) and factoring bud(k) out of the
integral (since it is constant) we get

xd(k + 1) = eλTxd(k) +
(∫ kT+T

kT
eλ(kT+T−τ)dτ

)
bud(k). (11)

We next simplify the integral in brackets by defining the variable
s := kT + T − τ:∫ kT+T

kT
eλ(kT+T−τ)dτ =

∫ 0

T
eλs(−ds) =

∫ T

0
eλsds.

Substituting in (11) we conclude

xd(k + 1) = λdxd(k) + bdud(k) (12)

where

λd = eλT , bd = b
∫ T

0
eλsds =

{
bT if λ = 0
b eλT−1

λ if λ 6= 0.

Thus, (12) evaluates the state of the continuous-time model (10) at the
next sample time. We refer to (12) as the ‘discretization’ of (10).
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Discretization and Controllability

Discretization for Vector State Models

In the last lecture we considered the linear continuous-time system

d
dt
~x(t) = A~x(t) + B~u(t), (1)

where ~x(t) is sampled every T units of time, leading to the sequence

~xd(k) := ~x(kT), k = 0, 1, 2, . . . (2)

If ~u(t) is constant between the samples:

~u(t) = ~ud(k) t ∈ [kT, (k + 1)T), (3)

then we can derive a discrete-time model

~xd(k + 1) = Ad~xd(k) + Bd~ud(k) (4)

that describes how the state of the continuous-time system evolves
from one sample to the next.

Last time we did this derivation for the scalar system

d
dt

x(t) = λx(t) + bu(t), (5)

and obtained
xd(k + 1) = λdxd(k) + bdud(k) (6)

where

λd = eλT , bd = b
∫ T

0
eλsds =

{
bT if λ = 0
b eλT−1

λ if λ 6= 0.
(7)

To generalize this result to the vector state model (1) let’s first assume
A is diagonal and B is a column vector:

A =


λ1

. . .
λn

 , B =


b1
...

bn

 .

Then (1) consists of decoupled scalar equations

d
dt

xi(t) = λixi(t) + biu(t)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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and we can discretize each as in (6)-(7). We then assemble the dis-
cretized scalar equations into the vector form (4) with

Ad =


eλ1T

. . .
eλnT

 , Bd =


∫ T

0 eλ1sds
. . . ∫ T

0 eλnsds




b1
...

bn

 .

Next suppose A is not diagonal, but diagonalizable2; that is, it has lin- 2 Recall that A is diagonalizable if it
has distinct eigenvalues. If there are
repeated eigenvalues A may or may
not be diagonalizable: we need to check
whether it has n linearly independent
eigenvectors or not.

early independent eigenvectors ~v1, · · · ,~vn. Then V =
[
~v1 · · · ~vn

]
is invertible and, as we saw last time, the change of variables

~z = V−1~x

results in the new state equations

d
dt
~z(t) =


λ1

. . .
λn


︸ ︷︷ ︸

Anew

~z(t) + V−1B︸ ︷︷ ︸
Bnew

u(t).

Since Anew is diagonal we apply the result above for the diagonal
case and obtain

~zd(k+ 1) =


eλ1T

. . .
eλnT

~zd(k)+


∫ T

0 eλ1sds
. . . ∫ T

0 eλnsds

V−1Bud(k).

To return to the original state variables, note that

~xd(k) = V~zd(k), ~zd(k) = V−1~xd(k),

and, therefore,

~xd(k + 1) = V~zd(k + 1)

= V




eλ1T

. . .
eλnT

~zd(k) +


∫ T

0 eλ1sds
. . . ∫ T

0 eλnsds

V−1Bud(k)



= V


eλ1T

. . .
eλnT

V−1

︸ ︷︷ ︸
= Ad

~xd(k) + V


∫ T

0 eλ1sds
. . . ∫ T

0 eλnsds

V−1B

︸ ︷︷ ︸
= Bd

ud(k). (8)

Summary: If A in (1) has linearly independent eigenvectors
~v1, · · · ,~vn with corresponding eigenvalues λ1, · · · , λn, then we

form the invertible matrix V =
[
~v1 · · · ~vn

]
and obtain the

discretized model (4) where Ad and Bd are as in (8).
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Example 1: Consider the system (1) with

A =

[
0 −1
1 0

]
and no input. The LC circuit model studied in Lecture 4A with L =

1, C = 1 had this form. As shown then, the eigenvalues/vectors are

λ1 = j, λ2 = −j, ~v1 =

[
1
−j

]
, ~v2 =

[
1
j

]
.

Thus,

V =
[
~v1 · · · ~vn

]
=

[
1 1
−j j

]
and V−1 =

1
2j

[
j −1
j 1

]
.

Then, from (8),

Ad = V

[
eλ1T

eλ2T

]
V−1 = V

[
ejT

e−jT

]
V−1

=
1
2j

[
1 1
−j j

] [
ejT

e−jT

] [
j −1
j 1

]

=
1
2j

[
1 1
−j j

] [
jejT −ejT

je−jT e−jT

]

=
1
2j

[
j(ejT + e−jT) −(ejT − e−jT)

−j2(ejT − e−jT) j(ejT + e−jT)

]

=

[
1
2 (e

jT + e−jT) − 1
2j (e

jT − e−jT)
1
2j (e

jT − e−jT) 1
2 (e

jT + e−jT)

]

=

[
cos T − sin T
sin T cos T

]
.

Controllability

The solution of the discrete-time state model

~x(t + 1) = A~x(t) + B~u(t), (9)

where ~x(t) is an n-dimensional vector, can be obtained recursively as:

~x(1) = A~x(0) + B~u(0)

~x(2) = A~x(1) + B~u(1) = A(A~x(0) + B~u(0)) + B~u(1)

= A2~x(0) + AB~u(0) + B~u(1)

~x(3) = A~x(2) + B~u(2) = A(A2~x(0) + AB~u(0) + B~u(1)) + B~u(2)

= A3~x(0) + A2B~u(0) + AB~u(1) + B~u(2)
...

~x(t) = At~x(0) + At−1B~u(0) + At−2B~u(1) + · · ·+ AB~u(t− 2) + B~u(t− 1)
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or, equivalently,

~x(t) = At~x(0) +
[

B AB · · · At−2B At−1B
]

~u(t− 1)
~u(t− 2)

...
~u(1)
~u(0)

 . (10)

Can we find an input sequence ~u(0),~u(1), . . . ,~u(t− 1) that brings the
state from ~x(0) to any desired value ~x(t) = ~xtarget at some time t? If
the answer is yes for any ~xtarget ∈ Rn, the system is called controllable.
Otherwise, the system is called uncontrollable. More precisely:

Definition. If, for every ~xtarget ∈ Rn, there exist a t and an input
sequence ~u(0),~u(1), . . . ,~u(t − 1) such that x(t) = ~xtarget, then the
system is controllable. If, for some ~xtarget ∈ Rn, there exist no t and no
input sequence ~u(0),~u(1), . . . ,~u(t− 1) such that x(t) = ~xtarget, then
the system is uncontrollable.

To investigate controllability further we assume the system has a
single input, that is B is a column vector~b ∈ Rn, and rewrite (10) as

~x(t)− At~x(0) =
[
~b A~b · · · At−2~b At−1~b

]


u(t− 1)
u(t− 2)

...
u(1)
u(0)

 . (11)

Achieving x(t) = ~xtarget means making the left hand side equal to
~xtarget − At~x(0). Thus, the system is controllable if we can arbitrarily
assign the the left hand side to any desired vector in Rn with an
appropriate choice of t and input sequence u(0), u(1), . . . , u(t− 1).

This means that the system is controllable if the column space of[
~b A~b · · · At−2~b At−1~b

]
, (12)

that is span{~b, A~b, · · · , At−2~b, At−1~b}, is Rn for some t.

Note that (12) has t columns. Since we can’t span Rn with fewer than
n columns, we must try t = n or higher to check whether the span is
Rn. However, as we will prove later, if the n columns

~b, A~b, · · · , An−2~b, An−1~b

do not already span Rn, adding more columns An~b, An+1~b, · · · will
not enlarge the span to Rn. This leads to the following conclusion:

Controllability ⇔ span{~b, A~b, · · · , An−2~b, An−1~b} = Rn.
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We will further discuss this condition and its proof in the next lec-
ture; for now we illustrate it with two examples.

Example 2: The system

~x(t + 1) =

[
1 1
0 2

]
︸ ︷︷ ︸

A

~x(t) +

[
0
1

]
︸︷︷︸
~b

u(t),

where n = 2, is controllable because

~b =

[
0
1

]
and A~b =

[
1
2

]

are linearly independent and together span R2. If we wish to reach
~xtarget from ~x(0) we can do so in t = 2 steps by solving

~xtarget − A2~x(0) =
[
~b A~b

] [u(1)
u(0)

]
=

[
0 1
1 2

] [
u(1)
u(0)

]

for u(0) and u(1):[
u(1)
u(0)

]
=

[
0 1
1 2

]−1

(~xtarget − A2~x(0))

Example 3: The system

~x(t + 1) =

[
1 1
0 2

]
︸ ︷︷ ︸

A

~x(t) +

[
1
0

]
︸︷︷︸
~b

u(t),

where only~b is different from Example 2, is uncontrollable because

A~b =

[
1
0

]

which is the same as~b, therefore span{~b, A~b} 6= R2. You can see that
adding A2~b, A3~b, · · · does not enlarge the span, because all of these
vectors are the same as~b.

The reason for uncontrollability becomes clear if we write the equa-
tion for the second state variable x2(t) explicitly:

x2(t + 1) = 2x2(t).

The right hand side doesn’t depend on u(t) or x1(t), which means
that x2(t) evolves independently and can be influenced neither di-
rectly by input u(t), nor indirectly through the other state x1(t).
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Controllability and System Identification

Controllability Continued

Recall from the last lecture that the discrete-time system

~x(t + 1) = A~x(t) + B~u(t), ~x(t) ∈ Rn (1)

is called controllable if, for every ~xtarget ∈ Rn, there exist a t and an
input sequence ~u(0),~u(1), . . . ,~u(t− 1) such that x(t) = ~xtarget.

To investigate controllability we assumed B is a column vector~b ∈
Rn, and wrote the solution of (1) as

~x(t)− At~x(0) =
[
~b A~b · · · At−1~b

]


u(t− 1)
u(t− 2)

...
u(0)

 . (2)

Next we observed that the system is controllable if

span{~b, A~b, · · · , At−1~b} = Rn for some t (3)

because, then, we can choose u(0), · · · , u(t − 1) to match the right-
hand side of (2) to ~xtarget − At~x(0) for any ~xtarget ∈ Rn.

Henceforth we assume~b 6= 0, since it is trivial to conclude uncon-
trollability otherwise. We also assume n ≥ 2, since b 6= 0 already
guarantees controllability when n = 1.

Now imagine an algorithm that starts with t = 1, checks if (3) holds;
if not, increments t by one and checks (3) again, and so on. Two
scenarios are possible:

1. The span grows with every increase in t up to and including t = n,
at which point we have n linearly independent columns:

span{~b, A~b, · · · , An−2~b, An−1~b} = Rn.

Therefore, the system is controllable.

2. The span grows with every increase in t up to and including t =

m, where m < n, and incrementing t to t = m + 1 does not grow the
span further – the dimension is still m.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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In the second scenario we may be tempted to increase t further and
expect that the span may eventually start growing again. This, how-
ever, is futile and the dimension of the span will be stuck at m < n no
matter how much we increase t.

Here is why: since the span stopped growing when t was raised from
t = m to t = m + 1, this means the new column Am~b was a linear
combination of the previous columns~b, A~b, · · · , Am−1~b, that is

Am~b = α0~b + α1 A~b + · · ·+ αm−1 Am−1~b (4)

for some coefficients α0, α1, . . . , αm−1. Raising t further to m+ 2 means
adding the new column Am+1~b, but

Am+1~b = A(Am~b) = α0 A~b + α1 A2~b + · · ·+ αm−1 Am~b

and substituting (4) for the last term in this sum, we see that Am+1~b
is still a linear combination of~b, A~b, · · · , Am−1~b. The same argument
applies to subsequent columns Am+2~b, Am+3~b, . . . , which means that
the dimension of the span remains stuck at m.

Therefore, in scenario 2, the span in (3) will not reach Rn no matter
how much we increase t, and the system is uncontrollable.

It follows from the discussion above that, instead of checking (3) for
varying values of t, we need to only check it for t = n. If it holds for
t = n, then scenario 1 applies and the systems is controllable. If not,
scenario 2 applies and the system is uncontrollable. This leads to the
following simplified controllability test:

Controllability ⇔ span{~b, A~b, · · · , An−2~b, An−1~b} = Rn.

Extensions to Multi-Input and Continuous-Time Systems

The controllability test above was derived for the single-input case
where B is a single column~b. The same test is also applicable to
a multi-input system2 where B is n × m. In this case we form the 2 The derivation for the multi-input case

uses the Cayley-Hamilton Theorem
that was alluded to in Discussion 8B.
This theorem is beyond the scope of
this course, but you can consult the
Wikipedia article if you are interested.

controllability matrix

C =
[

B AB · · · An−1B
]

which now has nm columns, and check whether its column space is
Rn. The system is controllable if so, and uncontrollable otherwise.

The controllability condition for the continuous-time system

d
dt
~x(t) = A~x(t) + B~u(t)

https://en.wikipedia.org/wiki/Cayley-Hamilton_theorem
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is exactly the same: form the controllability matrix C above and check
whether its column space is Rn. We omit the derivation for this case
but illustrate the result with a circuit example.

Example 1: For the circuit depicted on the right we treat the current
source as the control u(t), and the inductor currents i1(t) and i2(t) as
the state variables.

u

i1 i2 iR

L1 L2 R
Since the voltage across each capacitor is the same as the voltage
across the resistor, we have

L1
di1(t)

dt
= RiR(t)

L2
di2(t)

dt
= RiR(t).

(5)

Substituting iR = u− i1 − i2 from KCL and dividing the equations by
L1 and L2 respectively, we get[

di1(t)
dt

di2(t)
dt

]
=

[
− R

L1
− R

L1

− R
L2
− R

L2

]
︸ ︷︷ ︸

A

[
i1(t)
i2(t)

]
+

[
R
L1
R
L2

]
︸ ︷︷ ︸
~b

u(t).

Note that

A~b =

− R
L1

(
R
L1

+ R
L2

)
− R

L2

(
R
L1

+ R
L2

) = −
(

R
L1

+
R
L2

)
~b

which means that A~b and~b are linearly dependent. Thus the system
is not controllable.

To see the physical obstacle to controllability note that the two induc-
tors in parallel share the same voltage:

L1
di1(t)

dt
= L2

di2(t)
dt

.

Thus,
d
dt

(L1i1(t)− L2i2(t)) = 0

which means that L1i1(t)− L2i2(t) remains constant no matter what
u we apply: L1i1(t) − L2i2(t) = L1i1(0) − L2i2(0). Because of this
constraint we can’t control i1 and i2 independently. For example, if
i1(0) = i2(0) = 0, then L1i1(t) − L2i2(t) = 0 for all t, and we can’t
move i1 and i2 to target values that don’t meet this constraint.

We can, however, control the total current iL = i1 + i2 which obeys,
from (5),

diL(t)
dt

=

(
1
L1

+
1
L2

)
RiR(t) =

R
L
(−iL(t) + u(t))

where L ,
(

1
L1

+ 1
L2

)−1
. Note that this is the governing equation for

the circuit on the right where the two inductors are lumped into one.
u

iL iR

L R
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System Identification

In many applications the matrices A and B in the state model

~x(t + 1) = A~x(t) + B~u(t)

are not known exactly and change with operating conditions. The
goal in system identification is to learn these matrices by observing
the input sequence and the resulting state sequence.

Before we explain how this is done, let’s recall Least Squares estima-
tion from 16A. Suppose we have the relation

~y = D~p +~e (6)

where ~y ∈ R` is a vector of measurements, ~p ∈ Rk is a vector of
unknown parameters, D is a known ` × k matrix, and ~e represents
uncertainty, e.g., due to measurement error. We assume k < `, which
means we have fewer unknowns than measurements.

Least Squares gives an estimate ~̂p such that D~̂p is as close to ~y as
possible, i.e., ~̂p fits the measurements with the least magnitude of
error, ‖~e‖. As you saw in 16A, this is achieved when D~̂p matches the
projection of ~y onto the column space of D, as depicted on the right.

~y
~e

D~̂p

column space of D
In this case ~e is orthogonal to the column space of D, which means it
is orthogonal to each column of D = [~d1 · · · ~dk]:

~dT
i ~e = 0, i = 1, 2, . . . , k, or equivalently DT~e = 0.

Now, since ~e = ~y− D~p from (6), DT~e = 0 means

DT(~y− D~p) = 0 ⇒ DT D~p = DT~p.

In particular, when DT D is invertible, the least squares estimate is:

~̂p = (DT D)−1DT~y.

Returning to the problem of system identification, let’s first consider
the scalar system:

x(t + 1) = λx(t) + bu(t) + e(t)

where e(t) is a disturbance term. It follows that

x(1) = λx(0) + bu(0) + e(0)
x(2) = λx(1) + bu(1) + e(1)

...
x(`) = λx(`− 1) + bu(`− 1) + e(`− 1)
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where ` is the number of measurements. Rewriting the above as
x(0) u(0)
x(1) u(1)

... · · ·
x(`− 1) u(`− 1)


︸ ︷︷ ︸

=: D

[
λ

b

]
︸︷︷︸
=: ~p

+


e(0)
e(1)

...
e(`− 1)


︸ ︷︷ ︸

=: ~e

=


x(1)
x(2)

...
x(`)


︸ ︷︷ ︸
=: ~y

we obtain a standard Least Squares problem. Thus, when the 2× 2
matrix DT D is invertible, we obtain the estimates λ̂, b̂ from

~̂p =

[
λ̂

b̂

]
= (DT D)−1DT~y.

In practice DT D is invertible when the measurements contain enough
information about the unknown parameters. A trivial scenario where
DT D is not invertible is when we apply zero input u(t) = 0 for all
t. In this case the measurements contain no information about the
parameter b, and naturally the estimation problem is ill-posed.
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Learning

System Identification Continued

In many applications the matrices A and B in the state model

~x(t + 1) = A~x(t) + B~u(t) (1)

are not known exactly and change with operating conditions. The
goal in system identification is to learn these matrices by observing
the input sequence and the resulting state sequence.

Last time we considered the scalar system:

x(t + 1) = λx(t) + bu(t) + e(t)

where e is a disturbance term. From t = 1 to t = ` we have

x(1) = λx(0) + bu(0) + e(0)
x(2) = λx(1) + bu(1) + e(2)

...
x(`) = λx(`− 1) + bu(`− 1) + e(`)

(2)

which we rewrite in the following standard form for Least Squares:
x(0) u(0)
x(1) u(1)

... · · ·
x(`− 1) u(`− 1)


︸ ︷︷ ︸

D

[
λ

b

]
︸︷︷︸
~p

+


e(0)
e(1)

...
e(`− 1)


︸ ︷︷ ︸

~e

=


x(1)
x(2)

...
x(`)


︸ ︷︷ ︸

~y

. (3)

Thus, when DT D is invertible, we obtain the estimates λ̂, b̂ from

~̂p =

[
λ̂

b̂

]
= (DT D)−1DT~y.

Now let’s return to the vector case (1), with disturbance ~e(t) added to
the right-hand side. The equations below are analogous to (2):

~x(1) = A~x(0) + B~u(0) +~e(0)
~x(2) = A~x(1) + B~u(1) +~e(1)

...
~x(`) = A~x(`− 1) + B~u(`− 1) +~e(`− 1).

(4)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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If we transpose these equations, we get:

~x(1)T = ~x(0)T AT + ~u(0)T BT +~e(0)T

~x(2)T = ~x(1)T AT + ~u(1)T BT +~e(1)T

...
~x(`)T = ~x(`− 1)T AT + ~u(`− 1)T BT +~e(`− 1)T ,

(5)

which we can rewrite in a form similar to (3):
~x(0)T ~u(0)T

~x(1)T ~u(1)T

... · · ·
~x(`− 1)T ~u(`− 1)T


︸ ︷︷ ︸

D

[
AT

BT

]
︸ ︷︷ ︸

[~p1 · · ·~pn]

+


~e(0)T

~e(1)T

...
~e(`− 1)T


︸ ︷︷ ︸
[~e1 · · ·~en]

=


~x(1)T

~x(2)T

...
~x(`)T


︸ ︷︷ ︸
[~y1 · · ·~yn]

. (6)

Note that the unknowns and measurements are now contained in
matrices with n columns:

[
AT

BT

]
=:

[
~p1 · · · ~pn

]

~x(1)T

~y(x)T

...
~x(`)T

 =


x1(1) · · · xn(1)
x1(2) · · · xn(2)

...
...

x1(`) · · · xn(`)

 =:
[
~y1 · · · ~yn

]
.

Thus, we can separate (6) into n separate equations

D~pi +~ei = ~yi, i = 1, 2, . . . , n

and apply Least Squares to each one independently:

~̂pi = (DT D)−1DT~yi.

Note that ~yi here is a column consisting of measurements of the ith
state variable collected from t = 1 to t = `, and ~̂pi is our estimate for
the ith column of AT concatenated with the ith column of BT .

Singular Value Decomposition (SVD)

SVD separates a rank-r matrix A ∈ Rm×n into a sum of r rank-1
matrices, each written as a column times row. Specifically, we can
find:

1) orthonormal vectors ~u1, . . . ,~ur ∈ Rm,

2) orthonormal vectors ~v1, . . . ,~vr ∈ Rn,

3) real, positive numbers σ1, . . . , σr such that

A = σ1~u1~vT
1 + σ2~u2~vT

2 + · · ·+ σr~ur~vT
r . (7)
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The numbers σ1, . . . , σr are called singular values and, by convention,
we order them from the largest to smallest:

σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

In its original form A has mn entries to be stored. In the SVD form
each of the r terms is the product of a column of m entries with a row
of n entries; therefore we need r(m + n) numbers to store. This is an
advantage when r is small relative to m and n, that is r(m + n)� mn.

In a typical application the exact rank r may not be particularly
small, but we may find that the first few singular values, say σ1, . . . , σr̂,
are much bigger than the rest, σr̂+1, . . . , σr. Then it is reasonable to
discard the small singular values and approximate A as

A ≈ σ1~u1~vT
1 + σ2~u2~vT

2 + · · ·+ σr̂~ur̂~vT
r̂ (8)

which has rank = r̂, thus r̂(m + n)� mn numbers to store.

Besides enabling data compression, SVD allows us to extract impor-
tant features of a data set as illustrated in the next example.

Example (Netflix): Suppose we have a m × n matrix that contains
the ratings of m viewers for n movies. A truncated SVD as suggested
above not only saves memory; it also gives insight into the pref-
erences of each viewer. For example we can interpret each rank-1
matrix σi~ui~vT

i to be due to a particular attribute, e.g., comedy, action,
sci-fi, or romance content. Then σi determines how strongly the rat-
ings depend on the ith attribute, the entries of ~vT

i score each movie
with respect to this attribute, and the entries of ~ui evaluate how much
each viewer cares about this particular attribute. Then truncating
the SVD as in (8) amounts to identifying a few key attributes that
underlie the ratings. This is useful, for example, in making movie
recommendations as you will see in a homework problem.

Finding a SVD

To find a SVD for A we use either the n× n matrix AT A or the m×
m matrix AAT . We will see later that these matrices have only real
eigenvalues, r of which are positive and the remaining zero, and a
complete set of orthonormal eigenvectors. For now we take this as a fact
and outline the following procedure to find a SVD using AT A:

1. Find the eigenvalues λi of AT A and order them from the largest to
smallest, so that λ1 ≥ · · · ≥ λr > 0 and λr+1 = · · · = λn = 0.

2. Find orthonormal eigenvectors ~vi, so that

AT A~vi = λi~vi i = 1, . . . , r. (9)
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3. Let σi =
√

λi and obtain ~ui from

A~vi = σi~ui i = 1, . . . , r. (10)

We will provide a justification for this procedure in the next lecture.
For now we provide an example:

Example: Let

A =

1 2
1 2
1 2

 .

Since this matrix is rank-1 it is not difficult to write it as a column
times row, but we will instead practice the general procedure above.
Note that

AT A =

[
1 1 1
2 2 2

] 1 2
1 2
1 2

 =

[
3 6
6 12

]

and the eigenvalues of AT A are obtained from:

det(λI − A) = det

[
λ− 3 −6
−6 λ− 12

]
= λ2 − 15λ = λ(λ− 15) = 0.

Therefore, λ1 = 15 and λ2 = 0. Next we find an eigenvector ~v1 from[
λ1 − 3 −6
−6 λ1 − 12

]
~v1 =

[
12 −6
−6 3

]
~v1 = 0,

with length normalized to one:

~v1 =
1√
5

[
1
2

]
.

We compute the singular value from σ1 =
√

λ1 =
√

15, and ~u1 from
(10):

~u1 =
1
σ1

A~v1 =
1√
15

1√
5

1 2
1 2
1 2

 [
1
2

]
=

1√
15

1√
5

5
5
5

 =
1√
3

1
1
1

 .

Thus we have obtained the SVD:

A = σ1~u1~vT
1 =
√

15


1√
3

1√
3

1√
3

 [
1√
5

2√
5

]
.
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Singular Value Decomposition (SVD)

Recall that SVD separates a rank-r matrix A ∈ Rm×n into a sum of r
rank-1 matrices:

A = σ1~u1~vT
1 + σ2~u2~vT

2 + · · ·+ σr~ur~vT
r (1)

where ~u1, . . . ,~ur ∈ Rm are orthonormal, ~v1, . . . ,~vr ∈ Rn are orthonor-
mal, and σ1, . . . , σr are real, positive numbers called singular values.
By convention, we order them from the largest to smallest:

σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Finding a SVD

To find a SVD of the form (1) we use either the n × n matrix AT A
or the m× m matrix AAT . We will see later that these matrices have
only real eigenvalues, r of which are positive and the remaining zero,
and a complete set of orthonormal eigenvectors. For now we take this
as a fact and propose the following procedures to find a SVD for A:

SVD procedure using AT A:

1. Find the eigenvalues λi of AT A and order them from the largest to
smallest, so that λ1 ≥ · · · ≥ λr > 0 and λr+1 = · · · = λn = 0.

2. Find orthonormal eigenvectors ~vi, so that

AT A~vi = λi~vi i = 1, . . . , r. (2)

3. Let σi =
√

λi and obtain ~ui from

~ui =
1
σi

A~vi i = 1, . . . , r. (3)

Justification of the procedure: As stated above we will see later that,
for any rank-r matrix A ∈ Rm×n, AT A ∈ Rn×n has r positive eigen-
values and n− r eigenvalues at zero, along with orthonormal eigen-
vectors ~v1, · · · ,~vn. Taking these eigenvectors as given, we will show:

1) ~u1, · · · ,~ur computed as in (3) are themselves orthonormal;

2) the right-hand side of (1), with ~vi and ~ui generated according to
the procedure, indeed matches A.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Now the details for each:

1) To see that ~ui, i = 1, . . . , r, given by (3) are orthonormal, note that:

~uT
j ~ui =

1
σjσi

(A~vj)
T A~vi =

1
σjσi

~vT
j AT A~vi =

λi
σjσi

~vT
j ~vi (4)

where, in the last step, we substituted (2). The vectors ~vi, i = 1, . . . , r,
are orthonormal by construction, which means ~vT

j ~vi = 1 if i = j, and
0 if i 6= j. Thus, (4) becomes

~uT
j ~ui =

{
λi

σjσi
= λi

σ2
i
= 1 if i = j,

0 if i 6= j
(5)

proving orthonormality of ~ui, i = 1, . . . , r.

2) To see why σi, ~ui, ~vi resulting from the procedure above satisfy (1),
note that (3) implies A~vi = σi~ui, which we write in matrix form as:

A
[
~v1 · · ·~vr

]
︸ ︷︷ ︸
=: V1

=
[
~u1 · · ·~ur

] 
σ1

. . .
σr

 .

Next, multiply both sides from the right by VT
1 :

AV1VT
1 =

[
~u1 · · ·~ur

] 
σ1

. . .
σr



~vT

1
...
~vT

r


︸ ︷︷ ︸

VT
1

(6)

= σ1~u1~vT
1 + σ2~u2~vT

2 + · · ·+ σr~ur~vT
r . (7)

Since the right hand side is indeed the decomposition in (1), we need
to show that the left hand side is equal to A, that is AV1VT

1 = A.

To this end define V2 =
[
~vr+1 · · · ~vn

]
whose columns are the

remaining orthonormal eigenvectors for λr+1 = · · · = λn = 0. Then

V =
[
V1 V2

]
is an orthonormal matrix and, thus,

VVT =
[
V1 V2

] [VT
1

VT
2

]
= V1VT

1 + V2VT
2 = I.

Multiplying both sides from the left by A, we get

AV1VT
1 + AV2VT

2 = A. (8)

Since the columns of V2 are eigenvectors of AT A for zero eigenvalues
we have AT AV2 = 0, and multiplying this from the left by VT

2 we get
VT

2 AT AV2 = (AV2)
T(AV2) = 0. This implies AV2 = 0 and it follows
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from (8) that AV1VT
1 = A. Thus, the left hand side of (6) is A, which

proves that σi, ~ui, ~vi proposed by the procedure above satisfy (1). �

An alternative approach is to use the m × m matrix AAT which is
preferable to using the n × n matrix AT A when m < n. Below we
summarize the procedure and leave its justification as an exercise.

SVD procedure using AAT :

1. Find the eigenvalues λi of AAT and order them from the largest to
smallest, so that λ1 ≥ · · · ≥ λr > 0 and λr+1 = · · · = λm = 0.

2. Find orthonormal eigenvectors ~ui, so that

AAT ~ui = λi~ui i = 1, . . . , r. (9)

3. Let σi =
√

λi and obtain ~vi from

~vi =
1
σi

AT~ui i = 1, . . . , r. (10)

Example: Let’s follow this procedure to find a SVD for

A =

[
4 4
−3 3

]
.

We calculate

AAT =

[
4 4
−3 3

] [
4 −3
4 3

]
=

[
32 0
0 18

]

which happens to be diagonal, so the eigenvalues are λ1 = 32, λ2 =

18, and we can select the orthonormal eigenvectors:

~u1 =

[
1
0

]
~u2 =

[
0
1

]
. (11)

The singular values are σ1 =
√

λ1 = 4
√

2, σ2 =
√

λ2 = 3
√

2 and, from
(10),

~v1 =
1
σ1

AT~u1 =
1

4
√

2

[
4
4

]
=

1√
2

[
1
1

]
,

~v2 =
1
σ2

AT~u2 =
1

3
√

2

[
−3
3

]
=

1√
2

[
−1
1

]

which are indeed orthonormal. We leave it as an exercise to derive a
SVD using, instead, AT A.

Note that we can change the signs of ~u1 and ~u2 in (11), and they
still serve as orthonormal eigenvectors. This implies that SVD is not
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unique. However, changing the sign of ~ui changes the sign of ~vi in
(10) accordingly, therefore the product ~ui~vT

i remains unchanged.

Another source of non-uniqueness arises when we have repeated
singular values, as illustrated in the next example.

Example: To find a SVD for

A =

[
1 0
0 −1

]

note that AAT is the identity matrix, which has repeated eigenvalues
at λ1 = λ2 = 1 and admits any pair of orthonormal vectors as
eigenvectors. We parameterize all such pairs as

~u1 =

[
cos θ

sin θ

]
~u2 =

[
− sin θ

cos θ

]
(12)

where θ is a free parameter. Since σ1 = σ2 = 1, we obtain from (10):

~v1 =
1
σ1

AT~u1 =

[
cos θ

− sin θ

]
~v2 =

1
σ2

AT~u2 =

[
− sin θ

− cos θ

]
. (13)

Thus, (12)-(13) with σ1 = σ2 = 1 constitute a valid SVD for any choice
of θ. You can indeed verify that

~u1~vT
1 + ~u2~vT

2 =
[
~u1 ~u2

][~vT
1

~vT
2

]
=

[
cos θ − sin θ

sin θ cos θ

] [
cos θ − sin θ

− sin θ − cos θ

]

=

[
1 0
0 −1

]
. (14)
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Singular Value Decomposition (SVD) Continued

Recall that SVD separates a rank-r matrix A ∈ Rm×n into a sum of r
rank-1 matrices:

A = σ1~u1~vT
1 + σ2~u2~vT

2 + · · ·+ σr~ur~vT
r (1)

where ~u1, . . . ,~ur ∈ Rm are orthonormal, ~v1, . . . ,~vr ∈ Rn are orthonor-
mal, and σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

In most textbooks the SVD (1) is written as a product of three matri-
ces. To derive this alternative form we first rewrite (1) as

A = U1SVT
1 (2)

where U1 =
[
~u1 · · ·~ur

]
is m× r, V1 =

[
~v1 · · ·~vr

]
is n× r, and S is the

r× r diagonal matrix with entries σ1, . . . , σr:

S =


σ1

. . .
σr

 .

Recall that ~u1, · · · ,~ur correspond to eigenvectors of AAT for non-zero
eigenvalues, and similarly ~v1, · · · ,~vr are eigenvectors of AT A for
non-zero eigenvalues.

Next we form the m×m orthonormal matrix

U = [U1 U2]

where the columns of U2 = [~ur+1 · · · ~um] are eigenvectors of
AAT corresponding to zero eigenvalues. Likewise we define V2 =

[~vr+1 · · · ~vn] whose columns are orthonormal eigenvectors of AT A
for zero eigenvalues, and obtain the n× n orthogonal matrix

V = [V1 V2].

Then we write

A = U

[
S 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
︸ ︷︷ ︸

=: Σ

VT (3)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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which is identical to (2) but exhibits square and orthonormal matrices
U and VT , that is UTU = I and VTV = I. Having square and
orthonormal matrices U and V will allow us to give a geometric
interpretation of SVD in the next section.

It is important to understand the dimensions of the matrices in (3). Σ
is m× n, same as A. U and V, however, are square: U is m× m and
V is n× n. If A is square (m = n), then all three are square. If A is a
wide matrix with full row rank (r = m < n), then

A = U
[
S 0m×(n−m)

]
︸ ︷︷ ︸

= Σ

VT

If A is a tall matrix with full column rank (m > n = r), then

A = U

[
S

0(m−n)×n

]
︸ ︷︷ ︸

= Σ

VT

Geometric Interpretation of SVD

Note that multiplying a vector by an orthonormal matrix does not
change its length. This follows because UTU = I, which implies

‖U~x‖2 = (U~x)T(U~x) = ~xTUTU~x = ~xT~x = ‖~x‖2.

Thus we can interpret multiplication by an orthonormal matrix as a
combination of operations that don’t change length, such as rotations,
and reflections.

Since S is diagonal with entries σ1, . . . , σr, multiplying a vector by Σ
defined in (3) stretches the first entry of the vector by σ1, the second
entry by σ2, and so on.

Combining these observations we interpret A~x as the composition of
three operations:

1) VT~x which reorients ~x without changing its length,

2) ΣVT~x which stretches the resulting vector along each axis with the
corresponding singular value,

3) UΣVT~x which again reorients the resulting vector without chang-
ing its length.

The figure below illustrates these three operations moving from the
right to the left:

The geometric interpretation above reveals that σ1 is the largest am-
plification factor a vector can experience upon multiplication by A:
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VTΣUA =

~v1

~v2σ1
σ2

σ1~u1
σ2~u2

if the length of ~x is ‖~x‖ = 1 then ‖A~x‖ ≤ σ1.

For ~x = ~v1 we get ‖A~x‖ = σ1 with equality because VT~v1 is the first
unit vector which, when multiplied by Σ, gets stretched by σ1.

Symmetric Matrices

We say that a square matrix Q is symmetric if

Q = QT .

Note that the matrices AT A and AAT we used to compute a SVD for
A are automatically symmetric: using the identities (AB)T = BT AT

and (AT)T = A you can verify (AT A)T = AT A and (AAT)T = AAT .

Below we derive important properties of symmetric matrices that we
used without proof in our SVD procedures.

A symmetric matrix has real eigenvalues and eigenvectors.

Let Q be symmetric and let

Qx = λx, (4)

that is λ is an eigenvalue and x is an eigenvector. Let λ = a + jb and
define the conjugate λ̄ = a− jb. To show that b = 0, that is λ is real,
we take conjugates of both sides of Qx = λx to obtain

Qx̄ = λ̄x̄ (5)

where we used the fact that Q is real. The transpose of (5) is

x̄TQT = λ̄x̄T (6)

and, since Q = QT , we write

x̄TQ = λ̄x̄T . (7)

Now multiply (4) from the left by x̄T and (7) from the right by x:

x̄TQx = λx̄Tx

x̄TQx = λ̄x̄Tx
(8)
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Since the left hand sides are the same we have λx̄Tx = λ̄x̄Tx, and
since x̄Tx 6= 0, we conclude λ = λ̄. This means a + jb = a− jb which
proves that b = 0.

Now that we know the eigenvalues are real we can conclude the
eigenvectors are also real, because they are obtained from the equa-
tion (Q− λI)x = 0 where Q− λI is real. �

The eigenvectors can be chosen to be orthonormal.

We will prove this for the case where the eigenvalues are distinct al-
though the statement is true also without this restriction2. Orthonor- 2 A further fact is that a symmetric

matrix admits a complete set of eigen-
vectors even in the case of repeated
eigenvalues and is thus diagonalizable.

mality of the eigenvectors means they are orthogonal and each has
unit length. Since we can easily normalize the length to one, we need
only to show that the eigenvectors are orthogonal.

Pick two eigenvalue-eigenvector pairs: Qx1 = λ1x1, Qx2 = λ2x2,
λ1 6= λ2. Multiply Qx1 = λ1x1 from the left by xT

2 , and Qx2 = λ2x2

by xT
1 :

xT
2 Qx1 = λ1xT

2 x1

xT
1 Qx2 = λ2xT

1 x2.
(9)

Note that xT
2 Qx1 is a scalar, therefore its transpose is equal to itself:

xT
1 Qx2 = (xT

1 Qx2)
T = xT

2 QTx1 = xT
2 Qx1. This means that the left

hand sides of the two equations above are identical, hence

λ1xT
2 x1 = λ2xT

1 x2.

Note that xT
1 x2 = xT

2 x1 is the inner product of x1 and x2. Since λ1 6=
λ2, the equality above implies that this inner product is zero, that is
x1 and x2 are orthogonal. �

The final property below proves our earlier assertion that AAT and
AT A have nonnegative eigenvalues. (Substitute R = AT below for the
former, and R = A for the latter.)

If Q can be written as Q = RT R for some matrix R, then the
eigenvalues of Q are nonnegative.

To show this let xi be an eigenvector of Q corresponding λi, so that

RT Rxi = λixi.

Next multiply both sides from the left by xT
i :

xT
i RT Rxi = λixT

i xi = λi‖xi‖2.

If we define y = Rxi we see that the left hand side is yTy = ‖y‖2,
which is nonnegative. Thus, λi‖xi‖2 ≥ 0. Since the eigenvector is
nonzero, we have ‖xi‖ 6= 0 which implies λi ≥ 0. �
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Applications of SVD

Last time we wrote the SVD for the m× n matrix A as

A = U1SVT
1 (1)

where U1 =
[
~u1 · · ·~ur

]
is m× r, V1 =

[
~v1 · · ·~vr

]
is n× r, and S is the

r× r diagonal matrix with entries σ1, . . . , σr:

S =


σ1

. . .
σr

 .

We also formed the square and orthonormal matrices U = [U1 U2],
V = [V1 V2], and rewrote (1) as

A = UΣVT (2)

where Σ is m× n and subsumes S in its r× r upper left block:

Σ =

[
S 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
.

Before discussing some applications of SVD we note that the columns
of U1 in (1) form an orthonormal basis for the column space of A.
Similarly the columns of V2 span the null space of A. This is because
they are orthogonal to the columns of V1, so VT

1 ~x = 0 for any ~x that is
in the column space of V2 and, thus, (1) implies A~x = 0.

Least Squares with SVD

Recall that in Least Squares we consider the equation

~y = A~x +~e

where ~y ∈ Rm represents measurements, ~x ∈ Rn unknowns, ~e errors.

Typically there are more measurements than unknowns (m > n) so
A ∈ Rm×n is a tall matrix. We also assume A has linearly indepen-
dent columns, so the rank is r = n. Then the SVD of A has the form

A = U

[
S

0(m−n)×n

]
︸ ︷︷ ︸

= Σ

VT . (3)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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The goal in Least Squares is to find ~x such that ~e = ~y − A~x has the
least possible length. Substituting the SVD (3) for A, note

‖~e‖ = ‖~y− A~x‖ =
∥∥∥∥∥~y−U

[
S
0

]
VT~x

∥∥∥∥∥ .

Since UUT = I we can replace ~y in this expression with UUT~y, so
that we can factor out U:

‖~e‖ =
∥∥∥∥∥UUT~y−U

[
S
0

]
VT~x

∥∥∥∥∥ =

∥∥∥∥∥U

(
UT~y−

[
S
0

]
VT~x

)∥∥∥∥∥ . (4)

Remembering that multiplication with the orthonormal matrix U
does not change the length of a vector, we conclude

‖~e‖ =
∥∥∥∥∥UT~y−

[
S
0

]
VT~x

∥∥∥∥∥ .

Next note

UT~y−
[

S
0

]
VT~x =

[
UT

1 ~y
UT

2 ~y

]
−
[

SVT~x
0

]
=

[
UT

1 ~y− SVT~x
UT

2 ~y

]
(5)

and our goal is to minimize the length of this vector by choosing ~x.
The solution is apparent: since S and VT have inverses S−1 and V, we
can zero out the top component by choosing:

~x = VS−1UT
1 ~y. (6)

There is nothing we can do about the bottom component UT
2 ~y, since ~x

does not appear there. Therefore, (6) will minimize the norm of (5).

The solution (6) is identical to the familiar Least Squares formula

~x = (AT A)−1 AT~y. (7)

You can verify this equivalence by substituting (3) in (7), which
should give (6) after a little algebra.

The advantage of (6) is the transparency with which we obtained it
and the geometric insight it gives. When we substitute ~y = UUT~y in
(4) we implicitly split ~y into two components:

~y = UUT~y =
[
U1 U2

] [UT
1

UT
2

]
~y = U1UT

1 ~y + U2UT
2 ~y. ~y

U2UT
2 ~y

U1UT
1 ~y

column space of A

The first component, U1UT
1 ~y, is the projection of ~y onto the column

space of A. This is because the columns of U1 = [~u1 · · · ~ur] form an
orthonormal basis for the column space of A. The second component,
U2UT

2 ~y, is the remaining part of ~y that is orthogonal to the column
space. The Least Squares solution (6) simply matches A~x to the first
component, U1UT

1 ~y, which lies within the column space of A.
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Minimum Norm Solution

Above we studied an “overdetermined" problem with more equations
than unknowns. We now consider the “underdetermined" equation

~y = A~x (8)

where ~y ∈ Rm has smaller dimension than ~x ∈ Rn; that is A ∈ Rm×n

is a wide matrix. We assume it has linearly independent rows (r =

m < n), which means there are infinitely many solutions for ~x.

With so many choices for ~x we may want to pick the one with the
smallest length. To do so we substitute the SVD

A = U
[
S 0m×(n−m)

]
︸ ︷︷ ︸

= Σ

VT (9)

and write

~y = A~x = U
[
S 0

]
VT~x = U

[
S 0

] [VT
1 ~x

VT
2 ~x

]
= USVT

1 ~x.

Since S and U have inverses S−1 and UT , it follows that

VT
1 ~x = S−1UT~y. (10)

Any ~x satisfying (10) solves (8), but which solution has the least
norm? Recall that multiplication with VT does not change the norm,
so

‖~x‖ = ‖VT~x‖ =
∥∥∥∥∥
[

VT
1 ~x

VT
2 ~x

]∥∥∥∥∥
The first component, VT

1 ~x, is fixed by (10). The second component,
VT

2 ~x, is free and we set it to zero so the norm above is minimized.
Thus, the minimum norm solution for ~x is given by

VT~x =

[
VT

1 ~x
VT

2 ~x

]
=

[
S−1UT~y

0

]
. (11)

Since the inverse of VT is V = [V1 V2], (11) implies

~x = [V1 V2]

[
S−1UT~y

0

]
(12)

or, equivalently,

~x = V1S−1UT~y. (13)

Note from the zero entry in (12) that the minimum-norm solution
leaves no component in the column space of V2, which is the null
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space of A as discussed on page 1. Indeed a nonzero component in
the null space would not change A~x but increase the norm of ~x.

As an exercise you can show2 that (13) is equivalent to the formula: 2 Substitute (9) in (14) and simplify to
get (13).

~x = AT(AAT)−1~y. (14)

Principal Component Analysis (PCA)

PCA is an application of SVD in statistics that aims to find the most
informative directions in a data set.

Suppose the m× n matrix A contains n measurements from m sam-
ples, for example n test scores for m students. If we subtract from
each measurement the average over all samples, then each column of
A is an m-vector with zero mean, and the n× n matrix

1
m− 1

AT A

constitutes what is called the “covariance matrix" in statistics. Recall
that the eigenvalues of this matrix are the singular values of A ex-
cept for the scaling factor m − 1, and its orthonormal eigenvectors
correspond to ~v1, . . . ,~vn in the SVD of A.

The vectors ~v1,~v2, . . . corresponding to large singular values are
called principal components and identify dominant directions in the
data set along which the samples are clustered. The most significant
direction is ~v1 corresponding to σ1.

As an illustration, the scatter plot below shows n = 2 midterm scores
in a class of m = 94 students that I taught in the past. The data points
are centered around zero because the class average is subtracted from
the test scores. Each data point corresponds to a student and those
in the first quadrant (both midterms ≥ 0) are those students who
scored above average in each midterm. You can see that there were
students who scored below average in the first and above average in
the second, and vice versa.

For this data set the covariance matrix is:

1
93

AT A =

[
297.69 202.53
202.53 292.07

]

where the diagonal entries correspond to the squares of the standard
deviations 17.25 and 17.09 for Midterms 1 and 2, respectively. The
positive sign of the (1, 2) entry implies a positive correlation between
the two midterm scores as one would expect.
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The eigenvalues of AT A, that is the singular values of A are σ1 =

215.08 , σ2 = 92.66, and the corresponding eigenvectors of AT A are:

~v1 =

[
0.7120
0.7022

]
~v2 =

[
−0.7022
0.7120

]
.

The principal component ~v1 is superimposed on the scatter plot
and we see that the data is indeed clustered around this line. Note
that it makes an angle of tan−1(0.7022/0.7120) ≈ 44.6◦ which is
skewed slightly towards the Midterm 1 axis because the standard
deviation in Midterm 1 was slightly higher than in Midterm 2. We
may interpret the points above this line as students who performed
better in Midterm 2 than in Midterm 1, as measured by their scores
relative to the class average that are then compared against the factor
tan(44.6◦) to account for the difference in standard deviations.

The ~v2 direction, which is perpendicular to ~v1, exhibits less variation
than the ~v1 direction (σ2 = 92.66 vs. σ1 = 215.08).
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Case Study: Minimum Energy Control

In this example we review discretization, controllability, and mini-
mum norm solutions. Consider the model of a car moving in a lane

dp(t)
dt

= v(t)

dv(t)
dt

=
1

RM
u(t)

where p(t) is position, v(t) is velocity, u(t) is wheel torque, R is
wheel radius, and M is mass. This model is similar to an example
discussed in Lecture 7A, but here we ignore friction for simplicity.

First we discretize this continuous-time model. If we apply the con-
stant input u(t) = ud(k) from t = kT to (k + 1)T, then by integration

v(t) = v(kT) + (t− kT)
1

RM
ud(k)

p(t) = p(kT) + (t− kT)v(kT) +
1
2
(t− kT)2 1

RM
ud(k)

for t ∈ [kT, (k + 1)T). In particular, at t = (k + 1)T:

p((k + 1)T) = p(kT) + Tv(kT) +
T2

2RM
ud(k)

v((k + 1)T) = v(kT) +
T

RM
ud(k).

Putting these equations in matrix/vector form and substituting
pd(k) = p(kT), vd(k) = v(kT), we get[

pd(k + 1)
vd(k + 1)

]
=

[
1 T
0 1

]
︸ ︷︷ ︸

A

[
pd(k)
vd(k)

]
+

1
RM

[
1
2 T2

T

]
︸ ︷︷ ︸

~b

ud(k). (1)

Now suppose the vehicle is at rest with p(0) = v(0) = 0 at t = 0 and
the goal is to reach a target position ptarget and stop there (vtarget =

0). Recall from the lectures on controllability that if we can find a
sequence ud(0), ud(1), · · · , ud(`− 1) such that

[
ptarget

0

]
=
[
~b A~b · · · A`−1~b

]
︸ ︷︷ ︸

C`


ud(`− 1)
ud(`− 2)

...
ud(0)

 (2)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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then we reach the desired state in ` time steps, that is at time t = `T.

Since we have n = 2 state variables the controllability test we learned
checks whether C` with ` = 2 spans R2. This is indeed the case, since

C2 =
[
~b A~b

]
=

1
RM

[
1
2 T2 3

2 T2

T T

]

has linearly independent columns.

Although this test also suggests we can reach the target state in two
steps, the resulting values of ud(0) and ud(1) will likely exceed phys-
ical limits. For example, if we take the values2 RM = 5000 kg m, 2 say, for a sedan with mass M ≈ 1700

kg and wheel radius R ≈ 0.3mT = 0.1 s, ptarget = 1000 m, then[
ud(1)
ud(0)

]
= C−1

2

[
ptarget

0

]
=

[
−5 · 108

5 · 108

]
kg m2/s2,

which exceeds the torque and braking limits of a typical car by 5
orders of magnitude.3 3 If our car could deliver the torque

ud(0) = 5 · 108 kg m2/s2, then from (1)
we would reach vd(1) = v(T) = 104

m/s (22, 369 mph) in T = 0.1 seconds!
Therefore, in practice we need to select a sufficiently large number of
time steps `. This leads to a wide controllability matrix C` and allows
for infinitely many input sequences that satisfy (2). Among them we
can select the minimum norm solution so we spend the least control
energy. Using the minimum-norm solution formula

ud(`− 1)
ud(`− 2)

...
ud(0)

 = CT
` (C`CT

` )
−1

[
ptarget

0

]

and quite a bit of algebra, one will obtain the input sequence

ud(k) =
6RM(`− 1− 2k)

T2`(`2 − 1)
ptarget, k = 0, · · · , `− 1.

In the plot below we show this input sequence, as well as the result-
ing velocity and position profiles for RM = 5000 kg m, ptarget = 1000
m, T = 0.1 s, and ` = 1200. With these parameters we allow `T = 120
s (2 minutes) to travel 1 km. Note that the vehicle accelerates in the
first half of this period and decelerates in the second half, reaching
the maximum velocity 12.5 m/s (≈ 28 mph) in the middle. The ac-
celeration and deceleration are hardest at the very beginning and
at the very end, respectively. The corresponding torque is within a
physically reasonable range, [−2000, 2000] Nm.
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Figure 1: The minimum norm input
torque sequence, and the resulting
velocity and position profiles for RM =
5000 kg m, ptarget = 1000 m, T = 0.1
s, and ` = 1200. The horizontal axis is
time, which ranges from 0 to `T = 120
s (2 minutes). The vehicle accelerates
in the first half of this period and
decelerates in the second half, reaching
the maximum velocity 12.5 m/s (≈ 28
mph) in the middle.

Stability of Linear State Models

The Scalar Case

We first study a system with a single state variable x(t) that obeys

x(t + 1) = λx(t) + bu(t) (3)

where λ and b are constants. If we start with the initial condition
x(0), then we get by recursion

x(1) = λx(0) + bu(0)

x(2) = λx(1) + bu(1) = λ2x(0) + λbu(0) + bu(1)

x(3) = λx(2) + bu(2) = λ3x(0) + λ2bu(0) + λbu(1) + bu(2)
...

x(t) = λtx(0) + λt−1bu(0) + λt−2bu(1) + · · ·+ λbu(t− 2) + bu(t− 1),

rewritten compactly as:

x(t) = λtx(0) +
t−1

∑
k=0

λt−1−kbu(k) t = 1, 2, 3, . . . (4)

The first term λtx(0) represents the effect of the initial condition and
the second term ∑t−1

k=0 λt−1−kbu(k) represents the effect of the input
sequence u(0), u(1), . . . , u(t− 1).
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Definition. We say that a system is stable if its state x(t) remains
bounded for any initial condition and any bounded input sequence.
Conversely, we say it is unstable if we can find an initial condition and
a bounded input sequence such that |x(t)| → ∞ as t→ ∞.

It follows from (4) that, if |λ| > 1, then a nonzero initial condi-
tion x(0) 6= 0 is enough to drive |x(t)| unbounded. This is be-
cause |λ|t grows unbounded and, with u(t) = 0 for all t, we get
|x(t)| = |λtx(0)| = |λ|t|x(0)| → ∞. Thus, (3) is unstable for |λ| > 1.

Next, we show that |λ| < 1 guarantees stability. In this case λtx(0)
decays to zero, so we need only to show that the second term in (4)
remains bounded for any bounded input sequence. A bounded input
means we can find a constant M such that |u(t)| ≤ M for all t. Thus,∣∣∣∣∣t−1

∑
k=0

λt−1−kbu(k)

∣∣∣∣∣ ≤ t−1

∑
k=0
|λ|t−1−k|b||u(k)| ≤ |b|M

t−1

∑
k=0
|λ|t−1−k.

Defining the new index s = t− 1− k we rewrite the last expression as

|b|M
t−1

∑
s=0
|λ|s,

and note that ∑t−1
s=0 |λ|s is a geometric series that converges to 1

1−|λ|
since |λ| < 1. Therefore, each term in (4) is bounded and we con-
clude stability for |λ| < 1.

Summary: The scalar system (3) is stable when |λ| < 1, and
unstable when |λ| > 1.

When λ is a complex number, a perusal of the stability and instability
arguments above show that the same conclusions hold if we interpret
|a| as the modulus of a, that is:

|λ| =
√

Re{λ}2 + Im{λ}2.

What happens when |λ| = 1? If we disallow inputs (b = 0), this case
is referred to as “marginal stability" because |λtx(0)| = |x(0)|, which
neither grows nor decays. If we allow inputs (b 6= 0), however, we can
find a bounded input to drive the second term in (4) unbounded. For
example, when λ = 1, the constant input u(t) = 1 yields:

t−1

∑
k=0

λt−1−kbu(k) =
t−1

∑
k=0

b = bt

which grows unbounded as t → ∞. Therefore, |λ| = 1 is a precarious
case that must be avoided in designing systems.
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The Vector Case

When ~x(t) is an n-dimensional vector governed by

~x(t + 1) = A~x(t) + Bu(t), (5)

recursive calculations lead to the solution

~x(t) = At~x(0) +
t−1

∑
k=0

At−1−kBu(k) t = 1, 2, 3, . . . (6)

where the matrix power is defined as At = A · · · A︸ ︷︷ ︸
t times

.

Since A is no longer a scalar, stability properties are not apparent
from (6). However, when A is diagonalizable we can employ the
change of variables ~z := T~x and select the matrix T such that

Anew = TAT−1

is diagonal. A and Anew have the same eigenvalues and, since Anew

is diagonal, the eigenvalues appear as its diagonal entries:

Anew =


λ1

. . .
λn

 .

The state model for the new variables is

~z(t + 1) =


λ1

. . .
λn

~z(t) + Bnewu(t), Bnew = TB, (7)

which nicely decouples into scalar equations:

zi(t + 1) = λizi(t) + biu(t), i = 1, . . . , n (8)

where we denote by bi the i-th entry of Bnew. Then, the results for the
scalar case above imply stability when |λi| < 1 and instability when
|λi| > 1.

For the whole system to be stable each subsystem must be stable,
therefore we need |λi| < 1 for each i = 1, . . . , n. If there exists at least
one eigenvalue λi with |λi| > 1 then we conclude instability because
we can drive the corresponding state zi(t) unbounded.

Summary: The discrete-time system (5) is stable if |λi| < 1 for
each eigenvalue λ1, . . . , λn of A, and unstable if |λi| > 1 for some

eigenvalue λi.
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Stability of Linear State Models

Recall that a system with a single state variable x(t) satisfying

x(t + 1) = λx(t) + bu(t) (1)

is stable when |λ| < 1, and unstable when |λ| > 1. The system

~x(t + 1) = A~x(t) + Bu(t), (2)

~x(t) is an n-dimensional vector, is stable if |λi| < 1 for each eigen-
value λ1, . . . , λn of A, and unstable if |λi| > 1 for some eigenvalue.

Last time we justified this eigenvalue test for the case when A is
diagonalizable. In particular we used the change of variables ~z := T~x,
where T is such that

Anew = TAT−1

is diagonal2. A and Anew have the same eigenvalues and, since Anew 2 Choose T = V−1, where the columns
of V are the linearly independent
eigenvectors of A. Then TAT−1 =
V−1 AV, which is diagonal as we saw
early in the semester.

is diagonal, the eigenvalues appear as its diagonal entries:

Anew =


λ1

. . .
λn

 .

The state model for the new variables is

~z(t + 1) =


λ1

. . .
λn

~z(t) + Bnewu(t), Bnew = TB, (3)

which nicely decouples into scalar equations:

zi(t + 1) = λizi(t) + biu(t), i = 1, . . . , n (4)

where bi is the i-th entry of Bnew. Then, from the scalar result, we
conclude stability when |λi| < 1 and instability when |λi| > 1.

For the whole system to be stable each subsystem must be stable,
therefore we need |λi| < 1 for each i = 1, . . . , n. If there exists at least
one eigenvalue λi with |λi| > 1 then we conclude instability because
we can drive the corresponding state zi(t) unbounded.

The same stability condition (all eigenvalues must satisfy |λi| < 1)
holds when A is not diagonalizable. In that case a transformation

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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we will discuss later brings Anew to an upper-triangular form with
eigenvalues on the diagonal. Thus, instead of (3) we have

~z(t + 1) =


λ1 ? · · · ?

. . . . . .
...

. . . ?

λn

~z(t) + Bnewu(t) (5)

where the entries marked with ’?’ may be nonzero, but we don’t
need their explicit values for the argument that follows. Then it is not
difficult to see that zn obeys

zn(t + 1) = λnzn(t) + bnu(t) (6)

which does not depend on other states, so we conclude zn(t) remains
bounded for bounded inputs when |λn| < 1. The equation for zn−1

has the form

zn−1(t + 1) = λn−1zn−1(t) + [? zn(t) + bn−1u(t)] (7)

where we can treat the last two terms in brackets as a bounded input
since we have already shown that zn(t) is bounded. If |λn−1| < 1 we
conclude zn−1(t) is itself bounded and proceed to the equation:

zn−2(t + 1) = λn−2zn−2(t) + [? zn−1(t) + ? zn(t) + bn−2u(t)]. (8)

Continuing this argument recursively we conclude stability when
|λi| < 1 for each eigenvalue λi.

To conclude instability when |λi| > 1 for some eigenvalue, note that
the ordering of the eigenvalues in (5) is arbitrary: we can put them in
any order we want by properly selecting T. Therefore, we can assume
without loss of generality that an eigenvalue with |λi| > 1 appears in
the nth diagonal entry, that is |λn| > 1. Then, instability follows from
the scalar equation (6).

Stability of Continuous-Time Linear Systems

The solution of the scalar continuous-time system

d
dt

x(t) = λx(t) + bu(t) (9)

is given by

x(t) = eλtx(0) + b
∫ t

0
eλ(t−s)u(s)ds. (10)

It follows that this system is stable when λ < 0 (in which case eλt →
0 as t→ ∞) and unstable when λ > 0 (in which case eλt → ∞).
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If λ is complex then we check Re(λ) < 0 for the real part. This is
because, if we decompose λ into its real and imaginary parts, λ =

α + jω, then eλt = eαtejωt where |ejωt| = 1 and, thus, eλt → 0 if
α = Re(λ) < 0.

Using reasoning similar to the discrete-time case, we conclude that
the vector continuous-time system

d
dt
~x(t) = A~x(t) + B~u(t) (11)

is stable if Re(λi) < 0 for each eigenvalue λ1, . . . , λn of A, and unsta-
ble if Re(λi) > 0 for some eigenvalue λi.

The figures below highlight the regions of the complex plane where
the eigenvalues must lie for stability of a discrete-time (left) and
continuous-time (right) system.

1 Re(λ)

Im(λ) Im(λ)

Example 1: In Lecture 6A we modeled the motion of the pendulum
depicted on the right as

d
dt

x1(t) = x2(t)

d
dt

x2(t) = −
k
m

x2(t)−
g
`

sin x1(t),
(12)

where the state variables are the angle and angular velocity:

x1(t) := θ(t) x2(t) :=
dθ(t)

dt
.

θ

`

mg

mg sin θ

The two distinct equilibrium points are the downward position:

x1 = 0, x2 = 0, (13)

and the upright position:

x1 = π, x2 = 0. (14)

Since the entries of f (~x) are f1(~x) = x2 and f2(~x) = − k
m x2 − g

` sin x1,
we have

∇ f (~x) =

[
∂ f1(x1,x2)

∂x1

∂ f1(x1,x2)
∂x2

∂ f2(x1,x2)
∂x1

∂ f2(x1,x2)
∂x2

]
=

[
0 1

− g
` cos x1

−k
m

]
.
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By evaluating this matrix at (13) and (14), we obtain the linearization
around the respective equilibrium point:

Adown =

[
0 1
− g

`
−k
m

]
Aup =

[
0 1
g
`

−k
m

]
. (15)

The eigenvalues of Adown are the roots of λ2 + k
m λ + g

` , which can
be shown to have strictly negative real parts when k > 0. Thus the
downward position is stable.

The eigenvalues of Aup are the roots of λ2 + k
m λ− g

` , which are given
by:

λ1 = − k
2m
− 1

2

√(
k
m

)2
+ 4

g
`

λ2 = − k
2m

+
1
2

√(
k
m

)2
+ 4

g
`

.

Since λ2 > 0, the upright position in unstable. Note that making
the length ` smaller increases the value of λ2. This suggests that a
smaller length aggravates the instability of the upright position and
makes the stabilization task more difficult, as you would experience
when you try to balance a stick in your hand.

Predicting Transient Behavior from Eigenvalue Locations

We have seen that the solutions of a discrete-time system are com-
posed of λt

i terms where λi’s are the eigenvalues of A. Thus, to pre-
dict the nature of the solutions (damped, underdamped, unbounded,
etc.), it is important to visualize the sequence λt, t = 1, 2, . . . for a
given λ. If we rewrite λ as λ = |λ|ejω where |λ| is the distance to the
origin in the complex plane, then we get

λt = |λ|tejωt = |λ|t cos(ωt) + j |λ|t sin(ωt),

the real part of which is depicted in Figure 1 for various values of λ.
Note that the envelope |λ|t decays to zero when λ is inside the unit
disk (|λ| < 1) and grows unbounded when it is outside (|λ| > 1),
which is consistent with our stability criterion.

Likewise, for a continuous-time system each eigenvalue λi con-
tributes a function of the form eλit to the solution. Decomposing λ

into its real and imaginary parts, λ = α + jω, we get

eλt = eαtejωt = eαt cos(ωt) + j eαt sin(ωt).

Figure 2 depicts the real part of eλt for various values of λ. Note that
the envelope eαt decays when α = Re(λ) < 0 as in our stability
condition.
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Figure 1: The real part of λt for various
values of λ in the complex plane. It
grows unbounded when |λ| > 1, decays
to zero when |λ| < 1, and has constant
amplitude when λ is on the unit circle
(|λ| = 1).
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Example 2: Recall that the RLC circuit depicted on the right can be
modeled as

dx1(t)
dt

=
1
C

x2(t)

dx2(t)
dt

=
1
L
(−x1(t)− Rx2(t))

where x1 = vC and x2 = i. Since this model is linear we can rewrite it
in the form

d
dt
~x(t) = A~x(t) where A =

[
0 1

C
− 1

L − R
L

]
.

Then the roots of

det(λI − A) = λ2 +
R
L

λ +
1

LC

give the eigenvalues:

λ1,2 = −α∓
√

α2 −ω2
0 where α :=

R
2L

, ω0 :=
1√
LC

.

For α > ω0 we have two real, negative eigenvalues which indicate a
damped response. For α < ω0, we get the complex eigenvalues

λ1,2 = −α∓ jω where ω =
√

ω2
0 − α2,

indicating oscillations with frequency ω and decaying envelope e−αt.
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State Feedback Control

Suppose we are given a single-input control system

~x(t + 1) = A~x(t) + Bu(t), ~x(t) ∈ Rn, u(t) ∈ R, (1)

and we wish to bring ~x(t) to the equilibrium ~x = 0 from any initial
condition ~x(0). To do this we will use the “control policy"

u(t) = k1x1(t) + k2x2(t) + · · ·+ knxn(t) (2)

where k1, k2, . . . , kn are to be determined. Rewriting (2) as

u(t) = K~x(t) (3)

with row vector K = [k1 k2 · · · kn], and substituting in (1), we get

~x(t + 1) = (A + BK)~x(t). (4)

Thus, if we can choose K such that all eigenvalues of A + BK are
inside the unit circle, |λi(A + BK)| < 1, i = 1, . . . , n, then ~x(t) → 0 for
any ~x(0) from our stability discussions in the previous lectures.

We will see that if the system (1) is controllable, then we can arbi-
trarily assign the eigenvalues of A + BK by appropriately chosing K.
Thus, in addition to bringing the eigenvalues inside the unit circle
for stability, we can place them in favorable locations to shape the
transients, e.g., to achieve a well damped convergence.

~x(t + 1)=A~x(t) + Bu(t)
u(t)

x1(t)

...

xn(t)

k1

...

kn

+

+

We refer to (4) as the "closed-loop" system since the control policy
(2) generates a feedback loop as depicted in the block diagram. The
state variables are measured at every time step t and the input u(t) is
synthesized as a linear combination of these measurements.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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Comparison to Open Loop Control

Recall that controllability allowed us to calculate an input sequence
u(0), u(1), u(2), . . . that drives the state from ~x(0) to any ~xtarget. Thus,
an alternative to the feedback control (2) is to select ~xtarget = 0, calcu-
late an input sequence based on ~x(0), and to apply this sequence in
an “open-loop" fashion without using further state measurements as
depicted below.

~x(t + 1)=A~x(t) + Bu(t)
u(0), u(1), u(2), . . .

The trouble with this open-loop approach is that it is sensitive to
uncertainties in A and B, and does not make provisions against dis-
turbances that may act on the system.

By contrast, feedback offers a degree of robustness: if our design of K
brings the eigenvalues of A + BK to well within the unit circle, then
small perturbations in A and B would not move these eigenvalues
outside the circle. Thus, despite the uncertainty, solutions converge
to ~x = 0 in the absence of disturbances and remain bounded in the
presence of bounded disturbances.

Eigenvalue Assignment by State Feedback: Examples

Example 1: Consider the second order system

~x(t + 1) =

[
0 1
a1 a2

]
︸ ︷︷ ︸

A

~x(t) +

[
0
1

]
︸︷︷︸

B

u(t)

and note that the eigenvalues of A are the roots of the polynomial

det(λI − A) = λ2 − a2λ− a1.

If we substitute the control

u(t) = K~x(t) = k1x1(t) + k2x2(t)

the closed-loop system becomes

~x(t + 1) =

[
0 1

a1 + k1 a2 + k2

]
︸ ︷︷ ︸

A + BK

~x(t)
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and, since A + BK has the same structure as A with a1, a2 replaced by
a1 + k1, a2 + k2, the eigenvalues of A + BK are the roots of

λ2 − (a2 + k2)λ− (a1 + k1).

Now if we want to assign the eigenvalues of A+ BK to desired values
λ1 and λ2, we must match the polynomial above to

(λ− λ1)(λ− λ2) = λ2 − (λ1 + λ2)λ + λ1λ2,

that is,
a2 + k2 = λ1 + λ2 and a1 + k1 = −λ1λ2.

This is indeed accomplished with the choice k1 = −a1 − λ1λ2 and
k2 = −a2 + λ1 + λ2, which means that we can assign the closed-loop
eigenvalues as we wish.

Example 2: Let’s apply the eigenvalue assignment procedure above
to

~x(t + 1) =

[
1 1
0 2

]
︸ ︷︷ ︸

A

~x(t) +

[
1
0

]
︸︷︷︸

B

u(t).

Now we have

A + BK =

[
1 1
0 2

]
+

[
1
0

] [
k1 k2

]
=

[
1 + k1 1 + k2

0 2

]

and, because this matrix is upper triangular, its eigenvalues are the
diagonal entries:

λ1 = 1 + k1 and λ2 = 2.

Note that we can move λ1 with the choice of k1, but we have no con-
trol over λ2. In fact, since |λ2| > 1, the closed-loop system remains
unstable no matter what control we apply.

This is a consequence of the uncontrollability2 of this system: the 2 Note that B and AB are not linearly
independent; therefore, the system is
uncontrollable.

second state equation

x2(t + 1) = 2x2(t)

can’t be influenced by u(t), and x2(t) = 2tx2(0) grows exponentially.

Continuous-Time State Feedback

The idea of state feedback is identical for a continuous-time system,

d
dt
~x(t) = A~x(t) + Bu(t), u(t) ∈ R.
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To bring ~x(t) to the equilibrium ~x = 0 we apply

u(t) = K~x(t)

and obtain the closed-loop system

d
dt
~x(t) = (A + BK)~x(t).

The only difference from discrete-time is the stability criterion: we
must choose K such that Re(λi(A + BK)) < 0 for each eigenvalue λi.

Example 3: Consider the inverted pendulum depicted below

θ `

y

u

m

M

and let the state variables be θ: the angle, θ̇: angular velocity, ẏ: the
velocity of the cart. Then the equations of motion are

dθ

dt
= θ̇

dθ̇

dt
=

1
`(M

m + sin2 θ)

(
− u

m
cos θ − θ̇2` cos θ sin θ +

M + m
m

g sin θ

)
dẏ
dt

=
1

M
m + sin2 θ

(
u
m

+ θ̇2` sin θ − g sin θ cos θ

)

and linearization about the upright position θ = 0, θ̇ = 0, ẏ = 0 gives

d
dt

θ(t)
θ̇(t)
ẏ(t)

 =

 0 1 0
M+m

M` g 0 0
− m

M g 0 0


︸ ︷︷ ︸

A

θ(t)
θ̇(t)
ẏ(t)

+

 0
− 1

M`
1
M


︸ ︷︷ ︸

B

u(t).

We have omitted the cart position y from the state variables because
we are interested in stabilizing the point θ = 0, θ̇ = 0, ẏ = 0, and we
are not concerned about the final value of the position y(t).

We now design a state feedback controller,

u(t) = k1θ(t) + k2θ̇(t) + k3ẏ(t).
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Substituting the values M = 1, m = 0.1, l = 1, and g = 10, we get 0 1 0
11 0 0
−1 0 0


︸ ︷︷ ︸

A

+

 0
−1
1


︸ ︷︷ ︸

B

[
k1 k2 k3

]
=

 0 1 0
11− k1 −k2 −k3

−1 + k1 k2 k3

 .

The characteristic polynomial of this matrix is

λ3 + (k2 − k3)λ
2 + (k1 − 11)λ + 10k3 = 0

and, as in previous examples, we can choose k1, k2, k3, to match the
coefficients of this polynomial to those of

(λ− λ1)(λ− λ2)(λ− λ3)

where λ1, λ2, λ3 are desired closed-loop eigenvalues.
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Eigenvalue Assignment with State Feedback

In the previous lecture we studied the system

~x(t + 1) = A~x(t) + Bu(t), ~x(t) ∈ Rn, u(t) ∈ R, (1)

with the feedback control policy

u(t) = k1x1(t) + k2x2(t) + · · ·+ knxn(t), (2)

which we rewrote as
u(t) = K~x(t) (3)

with K = [k1 k2 · · · kn]. When we substitute (3) in (1), we get

~x(t + 1) = (A + BK)~x(t) (4)

and the task is to choose K such that all eigenvalues of A + BK are
inside the unit circle2 for stability. 2 For continuous-time systems the

eigenvalues of A + BK must have
negative real parts for stability.Ideally we would like to be able to assign the eigenvalues as we wish,

so we can influence the transients, e.g., for faster convergence3. We 3 See Figures 1-2 in Lecture 12B to see
how eigenvalue locations affect the
transients.

claimed last time that the controllability of the system (1) gives us
this ability: given a set of desired eigenvalues λ1, · · · , λn we can find
a corresponding K such that A + BK has those eigenvalues.

In this lecture we review some examples of designing K. We then
outline a proof of the claim that controllability gives us the ability to
assign the eigenvalues arbitrarily.

Example 1 (Cruise Control): In Lecture 7A we studied the nonlinear
model of a vehicle moving in a lane

M
d
dt

v(t) = −1
2

ρac v(t)2 +
1
R

u(t) (5)

where v(t) is velocity, u(t) is the wheel torque, M is vehicle mass, ρ

is air density, a is vehicle area, c is drag coefficient, and R is wheel
radius. To maintain v(t) at a desired value v∗ we apply the torque

u∗ =
R
2

ρac v∗2,

which counterbalances the drag force at that velocity. We rewrite the
model (5) as d

dt v(t) = f (v(t), u(t)), where

f (v, u) = − 1
2M

ρac v2 +
1

RM
u.

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Then the linearized dynamics for the perturbation ṽ(t) = v(t)− v∗ is

d
dt

ṽ(t) = λṽ(t) + bũ(t), (6)

where ũ(t) = u(t)− u∗,

λ =
∂ f (v, u)

∂v

∣∣∣∣
v∗ ,u∗

= − 1
M

ρacv∗, b =
∂ f (v, u)

∂u

∣∣∣∣
v∗ ,u∗

=
1

RM
.

If we apply u(t) = u∗, that is ũ(t) = 0, then the solution of (6) is

ṽ(t) = ṽ(0)eλt,

which converges to 0 since λ < 0. This means that if v(t) is perturbed
from v∗, it will converge back to v∗. However, the rate of convergence
can be very slow. Taking M = 1700 kg, a = 2.6 m2, ρ = 1.2 kg/m3,
c = 0.2, which are reasonable for a sedan, and assuming v∗ = 29 m/s
(≈ 65 mph) we get λ ≈ −0.01 s−1, i.e. a time constant of 100 seconds.

For faster convergence we can apply the feedback

ũ(t) = kṽ(t) (7)

which leads to
d
dt

ṽ(t) = (λ + bk)ṽ(t). (8)

Then the convergence rate is determined by λ + bk, which we can
assign arbitrarily by selecting k. Since ũ(t) = u(t) − u∗ and ṽ(t) =

v(t)− v∗, the actual torque applied to the vehicle is

u(t) = u∗ + k(v(t)− v∗).

Example 2 (Robot Car): The robot car used in the lab has two wheels,
each driven with a separate electric motor. Let dl(t) and dr(t) be the
distance traveled by the left and right wheels, and let ul(t) and ur(t)
denote the respective control inputs (duty cycle of pulse width mod-
ulated current). An appropriate model relating these variables is

dl(t + 1)− dl(t) = θlul(t)− βl

dr(t + 1)− dr(t) = θrur(t)− βr
(9)

where the right hand sides approximate the speed for each wheel.

The parameters for the two wheels may be significantly different.
Thus, applying an identical input to both wheels would lead to non-
identical speeds, and the car would go in circles. To straighten the
trajectory of the car we apply the control inputs

ul(t) =
v∗ + βl

θl
+

kl
θl
(dl(t)− dr(t))

ur(t) =
v∗ + βr

θr
+

kr

θr
(dl(t)− dr(t))

(10)
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where v∗ is the desired velocity, and kl and kr are constants to be
designed. Substitute (10) in (9) to get

dl(t + 1)− dl(t) = v∗ + kl(dl(t)− dr(t))

dr(t + 1)− dr(t) = v∗ + kr(dl(t)− dr(t)).
(11)

Next, define δ(t) := dl(t)− dr(t) and note from (11) that it satisfies

δ(t + 1) = (1 + kl − kr)δ(t).

Thus, to ensure δ(t)→ 0, we need to select kl and kr such that

|1 + kl − kr| < 1.

Without the feedback terms in (10), that is kl = kr = 0, we get

δ(t + 1) = δ(t)

which means that the error accumulated in δ(t) persists and is in
fact likely to grow if we incorporate a disturbance term. The feed-
back in (10) is thus essential to dissipate the error δ(t) and to keep it
bounded in the presence of disturbances.

Example 3: Recall this example from the last lecture:

~x(t + 1) =

[
0 1
a1 a2

]
︸ ︷︷ ︸

A

~x(t) +

[
0
1

]
︸︷︷︸

B

u(t),

where the characteristic polynomial of A is

det(λI − A) = λ2 − a2λ− a1.

If we substitute the control

u(t) = K~x(t) = k1x1(t) + k2x2(t)

the closed-loop system becomes

~x(t + 1) =

[
0 1

a1 + k1 a2 + k2

]
︸ ︷︷ ︸

A + BK

~x(t)

and, since A + BK has the same structure as A with a1, a2 replaced by
a1 + k1, a2 + k2, the eigenvalues of A + BK are the roots of

λ2 − (a2 + k2)λ− (a1 + k1).

If we want to assign the eigenvalues of A + BK to desired values λ1

and λ2, we must match the polynomial above to

(λ− λ1)(λ− λ2) = λ2 − (λ1 + λ2)λ + λ1λ2.
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This is accomplished with the choice

k1 = −a1 − λ1λ2, k2 = −a2 + λ1 + λ2.

For example, if we want λ1 = λ2 = 0, then k1 = −a1 and k2 = −a2.

Example 4: Here is a three-state example where A and B have a
structure similar to Example 2:

A =

 0 1 0
0 0 1
a1 a2 a3

 B =

0
0
1


and the characteristic polynomial is now

det(λI − A) = λ3 − a3λ2 − a2λ− a1.

The closed-loop system is

~x(t + 1) =

 0 1 0
0 0 1

a1 + k1 a2 + k2 a3 + k3


︸ ︷︷ ︸

A + BK

~x(t)

which has characteristic polynomial

det(λI − (A + BK)) = λ3 − (a3 + k3)λ
2 − (a2 + k2)λ− (a1 + k1). (12)

Note that each one of k1, k2 and k3 appears in precisely one coeffi-
cient and can change it to any desired value. If we want eigenvalues
at λ1, λ2, λ3, we simply match the coefficients of (12) to those of

(λ− λ1)(λ− λ2)(λ− λ3) = λ3 − (λ1 + λ2 + λ2)λ
2

−(λ1λ2 + λ1λ3 + λ2λ3)λ− λ1λ2λ3

by choosing k1 = λ1λ2λ3 − a1, k2 = λ1λ2 + λ1λ3 + λ2λ3 − a2, and
k3 = λ1 + λ2 + λ3 − a3.

Why does controllability enable us to assign the eigenvalues?

We will now show that controllability allows us to arbitrarily assign
the eigenvalues of A + BK with the choice of K. The key to our argu-
ment is the special form of A and B in Examples 3 and 4, which we
generalize to an arbitrary dimension n as:

Ac =



0 1 0 · · · 0
... 0 1

. . .
...

...
. . . . . . 0

0 · · · · · · 0 1
a1 a2 · · · an−1 an


Bc =



0
...
...
0
1


. (13)



ee16b - spring’20 - lecture 13b notes 5

This structure is called the "controller canonical form," hence the sub-
script "c." When Ac has this form, the entries of the last row a1, . . . , an

appear as the coefficients of the characteristic polynomial:

det(λI − Ac) = λn − anλn−1 − an−1λn−2 − · · · − a2λ− a1.

In addition Ac + BcK preserves the structure of Ac, except that the
entry ai is replaced by ai + ki, i = 1, . . . , n. Therefore,

det(λI− (Ac + BcK)) = λn− (an + kn)λ
n−1 · · · − (a2 + k2)λ− (a1 + k1)

where each one of k1, · · · , kn appears in precisely one coefficient and
can change it to any desired value. Thus we can arbitrarily assign the
eigenvalues of Ac + BcK as we did in Examples 3 and 4.

So how do we prove that for any controllable system

~x(t + 1) = A~x(t) + Bu(t) (14)

we can assign the eigenvalues of A + BK arbitrarily? We simply show
that an appropriate change of variables ~z = T~x brings A and B to the
form (13); that is, there exists T such that

TAT−1 = Ac and TB = Bc. (15)

This means that we can design a state feedback u = Kc~z to assign
the eigenvalues of Ac + BcKc as discussed above for the controller
canonical form. Since ~z = T~x, u = Kc~z is identical to u = K~x where

K = KcT. (16)

Note that T(A + BK)T−1 = Ac + BcKc and, thus, the eigenvalues
of A + BK are identical4 to those of Ac + BcKc, which have been 4 If λ, ~v is an an eigenvalue/eigenvector

pair for A + BK, that is

(A + BK)~v = λ~v,

then λ is also an eigenvalue for Ac +
BcKc, with eigenvector T~v. This is
because

(Ac + BcKc)T~v = (T(A + BK)T−1)T~v

= T(A + BK)~v = Tλ~v = λT~v.

assigned to desired values.

Conclusion: If the system (14) is controllable, then we can
arbitrarily assign the eigenvalues of A + BK with an appropriate

choice of K.

How do we know a matrix T satisfying (15) exists? Since we assumed
(14) is controllable, the matrix

C =
[

An−1B · · · AB B
]

(17)

is full rank and, thus, has inverse C−1. Denoting the top row of C−1

by ~qT , we note from the identity C−1C = I that

~qTC =
[
~qT An−1B · · · ~qT AB ~qT B

]
= [1 0 · · · 0]. (18)
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We will use this equation to show that the choice

T =


~qT

~qT A
...

~qT An−1


indeed satisfies (15) where Ac and Bc are as in (13). The second
equality in (15) follows because

TB =


~qT

~qT A
...

~qT An−1

 B =


~qT B
~qT AB

...
~qT An−1B

 =


0
0
...
1

 = Bc

by (18). To verify the first equality in (15) note that

TA =


~qT A
~qT A2

...
~qT An

 (19)

and compare this to

AcT =



0 1 0 · · · 0
... 0 1

. . .
...

...
. . . . . . 0

0 · · · · · · 0 1
a1 a2 · · · an−1 an




~qT

~qT A
...

~qT An−1



=


~qT A

...
~qT An−1

~qT(a1 I + a2 A + · · ·+ an An−1)

 . (20)

Indeed the rows of (20) and (19) match5 and thus TAT−1 = Ac, which 5 The bottom rows match as a con-
sequence of the Cayley-Hamilton
Theorem that you saw in Discussion
8B. It says that a matrix satisfies its own
characteristic polynomial:

An − an An−1 − · · · − a2 A− a1 I = 0.

is the first equality in (15).
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Upper Triangularization

When a square matrix is not diagonalizable2 the next best thing we 2 Remember an n × n matrix is diag-
onalizable if it has n linearly inde-
pendent eigenvectors. This is the case
when the eigenvalues are distinct.
For matrices with repeated eigenval-
ues diagonalizability depends on the
structure of the matrix.

can do is to bring it to an upper triangular form:
λ1 ? · · · ?

. . . . . .
...

. . . ?

λn

 . (1)

In Lecture 12B we used this form to prove that a discrete-time sys-
tem is stable when the eigenenvalues of A are inside the unit circle3 3 A similar proof establishes stability

of a continuous-time system when the
eigenenvalues have negative real parts.

without requiring diagonalizability.

In this lecture we will show that any square matrix can be brought
to an upper triangular form. The proof is by induction – it is a good
exercise in linear algebra as well as in making proofs by induction.

Let’s first recall what proof by induction means. Suppose we want to
prove that a statement Sn that depends on an integer n = 1, 2, 3, . . . is
true regardless of n. To do so by induction, we show:

• S1 is true

• for any k ≥ 1, if we assume Sk is true then Sk+1 is also true.

In the case of upper triangularization, n is the dimension of the ma-
trix and the statement Sn is:

For any n × n matrix A we can find an invertible matrix T such that
TAT−1 has the upper triangular form (1).

Now S1 is true because any scalar A has the form (1) with λ1 = A.
Moving on to the second bullet above, we need to show that:

We can upper triangularize (k + 1) × (k + 1) matrices if we assume that
k× k matrices can be upper triangularized.

To show this, let A be an arbitrary (k + 1)× (k + 1) matrix and let λ,~v
be an eigenvalue/vector pair4: A~v = λ~v. Normalize ~v so that ‖~v‖ = 1 4 We will assume these are real valued.

If not, the arguments that follow can
be modified by using the definition of
inner product for complex vectors and
defining orthonormality accordingly.

and choose k other vectors ~v1, . . . ,~vk ∈ Rk+1 such that

{~v,~v1, . . . ,~vk} (2)

is an orthonormal basis5 for Rk+1. Then, the (k + 1)× (k + 1) matrix 5 The Gram-Schmidt procedure from
Discussion 12A can be used to construct
vectors ~v1, . . . ,~vk .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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V :=
[
~v ~v1 · · · ~vk

]
is orthogonal: V−1 = VT =


~vT

~vT
1
...
~vT

k

 . (3)

It follows that

AV = A
[
~v ~v1 · · · ~vk

]
=
[
λ~v A~v1 · · · A~vk

]

V−1 AV =


~vT

~vT
1
...
~vT

k


[
λ~v A~v1 · · · A~vk

]

=


λ~vT~v ~vT A~v1 · · · ~vT A~vk

λ~vT
1~v ~vT

1 A~v1 · · · ~vT
1 A~vk

...
...

. . .
...

λ~vT
k~v ~vT

k A~v1 · · · ~vT
k A~vk



=


λ ~vT A~v1 · · · ~vT A~vk

0 ~vT
1 A~v1 · · · ~vT

1 A~vk
...

...
. . .

...
0 ~vT

k A~v1 · · · ~vT
k A~vk

 (4)

where, in the last step, we used the orthonormality of the basis (2).
Thus, we can write

V−1 AV =

[
λ ~qT

0 A0

]
where A0 is the k × k lower right submatrix in (4) and ~qT is the row
above this submatrix. Since we assumed k× k matrices can be upper
triangularized, there exists a matrix T0 such that T0 A0T−1

0 is upper
triangular. Now define the (k + 1)× (k + 1) matrix

T :=

[
1 0
0 T0

]
V−1

and note

TAT−1 =

[
1 0
0 T0

]
V−1 AV

[
1 0
0 T−1

0

]
=

[
1 0
0 T0

] [
λ ~qT

0 A0

] [
1 0
0 T−1

0

]

=

[
λ ~qTT−1

0
0 T0 A0T−1

0

]

where T0 A0T−1
0 is upper triangular by assumption. Thus, TAT−1 is

upper triangular and we conclude that if k× k matrices can be upper
triangularized, then the same is true for (k + 1)× (k + 1) matrices. By
induction the same conclusion extends to an arbitrary dimension n.
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Recall that the eigenvalues of an upper triangular matrix are its diag-
onal entries6. In addition, A and TAT−1 have identical eigenvalues7. 6 See Homework 11.

7 If λ, ~v is an an eigenvalue/eigenvector
pair for A, that is

A~v = λ~v,

then λ is also an eigenvalue for TAT−1,
with eigenvector T~v. This is because

(TAT−1)T~v = TA~v = Tλ~v = λT~v.

Thus, when we choose T such that TAT−1 is upper triangular, the
eigenvalues of A appear in the diagonal entries of TAT−1.

+ + +- - -

R L C

vR vL vC

i

Example (Critically Damped RLC Circuit): Recall that the RLC cir-
cuit depicted on the right can be modeled as

dx1(t)
dt

=
1
C

x2(t)

dx2(t)
dt

=
1
L
(−x1(t)− Rx2(t))

where x1 = vC and x2 = i. Rewrite this model in matrix/vector form

d
dt
~x(t) = A~x(t) where A =

[
0 1

C
− 1

L − R
L

]

and note that the roots of

det(λI − A) = λ2 +
R
L

λ +
1

LC

give the eigenvalues:

λ1,2 = − R
2L
∓

√(
R
2L

)2
− 1

LC
. (5)

We will analyze the critically damped case, where C = 4L
R2 and, thus,

the square root term in (5) is zero and we have repeated eigenvalues

λ1,2 = λc := − R
2L

.

When C = 4L
R2 the matrix A is

A =

[
0 R2

4L
− 1

L − R
L

]

and you can verify that the null space of A− λc I is one-dimensional.
Thus, we can’t find two linearly independent eigenvectors and A is
not diagonalizable. To upper triangularize A we use the eigenvector

~v =
2√

R2 + 4

[
R
2
−1

]

which is normalized so that ‖~v‖ = 1. Then we introduce

~v1 =
2√

R2 + 4

[
1
R
2

]

so that {~v,~v1} is an orthonormal basis for R2.
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Then the matrix V constructed as in (3) is

V =
2√

R2 + 4

[
R
2 1
−1 R

2

]
.

Since A is 2× 2, it follows from (4) that V−1 AV is upper triangular:

V−1 AV =

[
− R

2L
1
L

R2+4
4

0 − R
2L

]
.

Thus, the change of variables ~z = V−1~x leads to the model

d
dt

z1(t) = − R
2L

z1(t) +
1
L

R2 + 4
4

z2(t)

d
dt

z2(t) = − R
2L

z2(t).

The second equation for z2(t) has the simple solution:

z2(t) = e−
R
2L tz2(0).

If we substitute this solution into the first equation for z1(t) we get:

d
dt

z1(t) = −
R
2L

z1(t) +
1
L

R2 + 4
4

e−
R
2L tz2(0)︸ ︷︷ ︸

=: u(t)

where we treat the second term as an input so that the solution is:

z1(t) = e−
R
2L tz1(0) +

∫ t

0
e−

R
2L (t−s)u(s)ds

= e−
R
2L tz1(0) +

1
L

R2 + 4
4

∫ t

0
e−

R
2L (t−s)e−

R
2L sz2(0)ds

= e−
R
2L tz1(0) +

1
L

R2 + 4
4

e−
R
2L t
∫ t

0
z2(0)ds

= e−
R
2L tz1(0) +

1
L

R2 + 4
4

e−
R
2L ttz2(0).

We can put the solution in matrix/vector form:[
z1(t)
z2(t)

]
=

[
e−

R
2L t 1

L
R2+4

4 e−
R
2L tt

0 e−
R
2L t

] [
z1(0)
z2(0)

]
and return to the original state variables by substituting ~z = V−1~x:[

x1(t)
x2(t)

]
= V

[
e−

R
2L t 1

L
R2+4

4 e−
R
2L tt

0 e−
R
2L t

]
V−1

[
x1(0)
x2(0)

]
.

Substituting V and V−1, and simplifying, we get[
x1(t)
x2(t)

]
=

[
e−

R
2L t + R

2L e−
R
2L tt R2

4L e−
R
2L tt

− 1
L e−

R
2L tt e−

R
2L t − R

2L e−
R
2L tt

] [
x1(0)
x2(0)

]
.

The main thing to note here is the presence of the terms e−
R
2L tt,

where the exponential function is multiplied by t. Such terms are
characteristic of systems where the matrix A cannot be diagonalized.


