EECS 16B Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Discussion 1A

1. DFT of pure sinusoids

We can think of a real-world signal that is a function of time $x(t)$. By recording its values at regular intervals, we can represent it as a vector of discrete samples \vec{x}, of length n.

$$
\vec{x}=\left[\begin{array}{c}
x[0] \tag{1}\\
x[1] \\
\vdots \\
x[n-1]
\end{array}\right]
$$

Let $\vec{X}=\left[\begin{array}{lll}X[0] & \ldots & X[n-1\end{array}\right]^{T}$ be the signal \vec{x} represented in the frequency domain, that is

$$
\begin{equation*}
\vec{X}=U^{-1} \vec{x}=U^{*} \vec{x} \tag{2}
\end{equation*}
$$

where U is a matrix of the DFT basis vectors $\left(\omega=e^{i \frac{2 \pi}{n}}\right)$.

$$
U=\left[\begin{array}{ccc}
\mid & & \mid \tag{3}\\
\vec{u}_{0} & \cdots & \vec{u}_{n-1} \\
\mid & & \mid
\end{array}\right]=\frac{1}{\sqrt{n}}\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)}
\end{array}\right]
$$

Alternatively, we have that $\vec{x}=U \vec{X}$ or more explicitly

$$
\begin{equation*}
\vec{x}=X[0] \vec{u}_{0}+\cdots+X[n-1] \vec{u}_{n-1} \tag{4}
\end{equation*}
$$

In other words, \vec{x} is a linear combination of the complex exponentials \vec{u}_{i} with coefficients $X[i]$.
(a) Consider the continuous-time signal $x(t)=\cos \left(\frac{2 \pi}{3} t\right)$. Suppose that we sampled it every 1 second to get (for $n=3$ time steps):

$$
\vec{x}=\left[\begin{array}{lll}
\cos \left(\frac{2 \pi}{3}(0)\right) & \cos \left(\frac{2 \pi}{3}(1)\right) \quad \cos \left(\frac{2 \pi}{3}(2)\right)
\end{array}\right]^{T}
$$

Compute \vec{X} for this signal.
(b) Now for the same signal as before, suppose that we took $n=6$ samples. In this case we would have:

$$
\vec{x}=\left[\cos \left(\frac{2 \pi}{3}(0)\right) \quad \cos \left(\frac{2 \pi}{3}(1)\right) \quad \cos \left(\frac{2 \pi}{3}(2)\right) \quad \cos \left(\frac{2 \pi}{3}(3)\right) \quad \cos \left(\frac{2 \pi}{3}(4)\right) \quad \cos \left(\frac{2 \pi}{3}(5)\right)\right]^{T}
$$

Repeat what you did above. What is \vec{X} for this signal.
(c) Let's do this more generally. For the signal $x(t)=\cos \left(\frac{2 \pi k}{N} t\right)$, compute \vec{X} of its vector form in discrete time, \vec{x}, of length $n=N$:

$$
\vec{x}=\left[\begin{array}{llll}
\cos \left(\frac{2 \pi k}{N}(0)\right) & \cos \left(\frac{2 \pi k}{N}(1)\right) & \cdots & \cos \left(\frac{2 \pi k}{N}(n-1)\right)
\end{array}\right]^{T} .
$$

2. The DFT basis and LTI systems

Suppose \vec{x} is the input signal applied to a linear time-invariant (LTI) system characterized by the impulse response \vec{h}. The output \vec{y} is given by $C_{\vec{h}} \vec{x}$ where $C_{\vec{h}}$ is a circulant matrix with the first column given by \vec{h}. Suppose the DFT coefficients of \vec{x} are given by

$$
\vec{X}=\left[\begin{array}{llll}
X[0] & X[1] & \ldots & X[n-1
\end{array}\right]^{T} .
$$

(a) Compute the DFT representation of the impulse response \vec{h} as well as the eigenvalues of the circulant matrix that defines the system with that impulse response. $(n=3)$

$$
\vec{h}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{T}
$$

(b) Compute the DFT representation of the impulse response \vec{h} as well as the eigenvalues of the circulant matrix that defines the system with that impulse response. $(n=3)$

$$
\vec{h}=\left[\begin{array}{lll}
\cos \left(\frac{2 \pi}{3}(0)\right) & \cos \left(\frac{2 \pi}{3}(1)\right) & \cos \left(\frac{2 \pi}{3}(2)\right)
\end{array}\right]^{T}
$$

(c) Compute the DFT representation of the impulse response \vec{h} as well as the eigenvalues of the circulant matrix that defines the system with that impulse response. $(n=N)$

$$
\vec{h}=\left[\begin{array}{llll}
\cos \left(\frac{2 \pi k}{N}(0)\right) & \cos \left(\frac{2 \pi k}{N}(1)\right) & \cdots & \cos \left(\frac{2 \pi k}{N}(n-1)\right)
\end{array}\right]^{T}
$$

3. Convolution and Duality

There is a term "convolution" that is often used in signal-processing. This is a very close sibling (how are they different?) to the term "correlation" that you have already learned in 16A. We call $C_{\vec{x}} \vec{y}$ the circular convolution of the signals \vec{x} and \vec{y}, and this is sometimes denoted by $\vec{x} \circledast \vec{y}$.
(a) Let $\vec{z}=C_{\vec{x}} \vec{y}$. Let $\vec{X}, \vec{Y}, \vec{Z}$ be the DFT-basis representations of the signals $\vec{x}, \vec{y}, \vec{z}$. Use the properties of the DFT basis to relate \vec{Z} to \vec{X} and \vec{Y}.
(b) Now, let's do something seemingly strange. Let's try the same thing in the frequency-domain. Let $\vec{W}=C_{\vec{X}} \vec{Y}$. What is the relationship between \vec{w} and \vec{x} and \vec{y} ?

