EECS 16B Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Discussion 1B

1. Cosine Transformation Assume that we are dealing with signals of length n.

$$
\vec{x}=\left[\begin{array}{c}
x[0] \tag{1}\\
x[1] \\
\vdots \\
x[n-1]
\end{array}\right]=\sum_{p=0}^{n-1} X[p] \vec{u}_{p}=\left\{\begin{array}{cll}
\sum_{p=-\left\lfloor\frac{n}{2}\right\rfloor}^{\left\lfloor\frac{n}{2}\right\rfloor} & X[p] \overrightarrow{u_{p}} & \text { if } n \text { odd } \\
\sum_{p=-\frac{n}{2}+1}^{\frac{n}{2}} & X[p] \vec{u}_{p} & \text { if } n \text { even }
\end{array}\right.
$$

In the lectures, we have seen that we can represent signals with sums of complex exponentials in the DFT basis. One non-intuitive aspect is that, even when the signal is real, the basis is complex. In this problem, we will explore a different representation in which real signals are written as linear combinations of periodic real signals.
Specifically, we will show how to derive

$$
\begin{equation*}
x[t]=\alpha_{0}+\sum_{m=1}^{\left\lfloor\frac{n}{2}\right\rfloor} \alpha_{m} \cos \left(\frac{2 \pi m}{n} t+\phi_{m}\right) . \tag{2}
\end{equation*}
$$

First, we need to understand cosines with phases.
(a) For a real signal \vec{x}, the DFT coefficients are conjugate symmetric, i.e. $X[m]=X[-m]^{*}$ (you will show this in the homework). Therefore, suppose $X[m]=r e^{i \theta}$, what is $X[-m]$?
(b) Now assume that, for a real signal \vec{x}, its DFT coefficients are $X[m]=0$ for $m \neq \pm 5$. Show that we can represent the t-th component of \vec{x} by $x[t]=\alpha \cos \left(\frac{2 \pi}{n} 5 t+\phi\right)$. Find α and ϕ. Your answer should be in terms of $|X[5]|$, and $\angle X[5]$.
(c) Therefore, let \vec{x} be an arbitrary signal of length n, where n is odd. Write it as a sum of cosines where the cosine scaling and phase are written in terms of the DFT coefficients, $X\left[-\frac{n-1}{2}\right], \ldots, X\left[\frac{n-1}{2}\right]$. You can use $\angle z$ and $|z|$ to refer to the angle and magnitude of a complex number, respectively (i.e. $z=|z| e^{i \angle z}$).
(d) How about when n is even?
2. Phase response Let \vec{x} be a real signal of length n (assume n odd till the end). In the previous part, we showed that we could write

$$
x[t]=\alpha_{0}+\sum_{p=1}^{\left\lfloor\frac{n}{2}\right\rfloor} \alpha_{p} \cos \left(\frac{2 \pi p}{n} t+\phi_{p}\right) .
$$

where there are $1+\frac{n-1}{2}$ different α_{p} parameters and $\frac{n-1}{2}$ parameters ϕ_{p}.
Let C be a circulant matrix with eignenvalues $\lambda_{0}, \ldots, \lambda_{n-1}$. In lecture, we have seen that the DFT basis diagonalizes C (which correspond to LTI systems). However, the basis is complex and the eigenvalues are usually complex. However, if we push a real signal through C, we will get a real signal back. Where do all the imaginary parts go, then?

Let \vec{y} be the output of C with the input \vec{x}. The reason why the DFT basis is so useful is that, since C is diagonalized by the basis, we have

$$
\begin{equation*}
y[t]=\frac{1}{\sqrt{n}} \sum_{p=0}^{n-1} \lambda_{p} X[p] e^{i \frac{2 \pi p}{n} t} \tag{3}
\end{equation*}
$$

(a) Use the fact that the complex exponentials are eigenvectors of C to write out what the output of C is when given the input \vec{x}, for the specific case of $x[t]=\cos \left(\frac{2 \pi p}{n} t+\theta\right)$.
(b) Using the fact that the eigenvalues λ_{p} for a real circulant matrix C exhibit conjugate symmetry (from the Homework), what cosine does this output correspond to?
(c) What does the system C do to cosines in terms of the effect on their magnitude, frequency, and phase?
(d) Write $y[t]$ entirely as a sum of cosines.
(e) What changes for n even? (Think about what $\lambda_{\frac{n}{2}}$ must be like for a real C matrix.)

Contributors:

- Alan Malek.
- Ming Jin.

