EECS 16B Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Discussion 4A

1. Binary Encoding Review

We have used decimal numbers all our lives. Here we want to introduce a different way to express numbers: binary encoding. The term *bit* means "binary digit", meaning 0 or 1 in binary encoding. In a binary number, a bit's value depends on its position, starting from the right. Like tens, hundreds, and thousands in a decimal number, a bit's value grows by a power of two as its position goes from right to left. Here we use $(N)_2$ to indicate N is expressed by binary encoding, and $(N)_{10}$ means N is expressed in decimal. For example, $(245)_{10} = 2 \times 10^2 + 4 \times 10^1 + 5 \times 10^0$, while $(11010)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$.

- (a) Express $(10)_{10}$ with binary encoding.
- (b) Given *k* binary digits, what is the biggest number you can express?
- 2. Boolean Formulae And Natural Numbers In Boolean algebra, the values of all variables are the truth values, *true* and *false*, usually denoted 1 and 0 respectively. A Boolean formula is like an arithmetic combination of a set of Boolean variables, {B₀, ... B_n}, with Boolean operators, AND, OR, etc. Here we use ¬ for NOT, ∧ for AND, ∨ for OR, and ⊕ for XOR. Notice that ¬ is a unary operator which only acts on one Boolean variable, while others are binary operators.

A Boolean formula can evaluate to a truth value, once the values of all variables in this formula are defined. For example, a Boolean formula, $f = B_0 \land B_1$, shows a Boolean operator, **AND**, acting on two Boolean variables, B_0 and B_1 . If $B_0 = B_1 = 1$, f evaluates to 1, while f = 0 under other values of B_0 and B_1 . Another Boolean formula $g = \neg B_0$ evaluates to 1 when $B_0 = 0$, g = 0 when $B_1 = 1$.

In this question, we want to show that each natural number can be expressed by a Boolean formula with a set of Boolean variables representing its binary digits. For a binary number $(10)_2$, suppose we have two Boolean variables, B_0 and B_1 to express the two bits of this number. We want to check if they express this number correctly, so we need to find a Boolean formula h of B_0 and B_1 , such that when the two variables express $(10)_2$ correctly, h evaluates to 1. In this case, h should be $B_1 \wedge \neg B_0$, if we use B_0 to express the rightmost bit of this number. Hence h will evaluate to 1 only when $B_0 = 0$ and $B_1 = 1$.

- (a) Express an integer, $(1)_{10}$, with a Boolean formula f, which includes only one Boolean variable B_0 .
- (b) Express an integer $(0)_{10}$ with a Boolean formula g, which includes only one Boolean variable B_0 .
- (c) Express an integer $(17)_{10}$, with a Boolean formula *h*, with 5 Boolean variables, B_0, B_1, B_2, B_3 and B_4 .
- (d) Given a natural number $(N)_{10}$, how could we express it with a Boolean formula? How many Boolean variables do we need?
- **3. Binary Addition with Boolean Operators** Here we want to show how to perform addition between two binary numbers.
 - (a) Compute $(1)_2 + (1)_2$ in binary encoding.
 - (b) Compute $(1111)_2 + (1001)_2$.

- (c) Now let's think about how to express binary addition with Boolean operators. Suppose we want to perform binary addition between two Boolean variables, A_0 and B_0 , we should have two Boolean variables to express the results of carry (C_0) and sum (S_0). Express the two outputs with Boolean formulae in terms of A_0 and B_0 .
- (d) Now we want to perform binary addition between two 2-bit binary numbers, $(A_1A_0)_2$ and $(B_1B_0)_2$. Could we reuse the results from (c)? (*Hint: could we use C*₀ to express some formulae?)
- (e) Use the results above to verify $(10)_2 + (11)_2 = (101)_2$.

Contributors:

• Yu-Yun Dai.