EECS 16B Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Discussion 5A

1. RC Circuits

In this problem, we will be using differential equations to find the voltage across a capacitor V_{C} over time in an RC circuit. We set up our problem by first defining three functions over time: $I(t)$ is the current at time $t, V(t)$ is the voltage across the circuit at time t, and $V_{C}(t)$ is the voltage across the capacitor at time t.
Recall from 16A, that the voltage across a resistor is defined as $V_{R}=R I_{R}$ where I_{R} is the current across the resistor. Also, recall that the voltage across a capacitor is defined as $V_{C}=\frac{Q}{C}$ where Q is the charge across the capacitor.

Figure 1: Example Circuit
(a) First, find an equation that relates the current across the capacitor $I(t)$ with the voltage across the capacitor $V_{C}(t)$.
(b) Using Kirchhoff's law, write an equation that relates the functions $I(t), V_{C}(t)$, and $V(t)$.
(c) So far, we have three unknown functions and only one equation, but we can remove $I(t)$ from the equation using what we learned in part (a). Rewrite the previous equation in part (b) in the form of a differential equation.
(d) Let's suppose that for $t<0$ the capacitor is precharged to a voltage $V_{D D}$ and that $V(t)=0 \forall t \geq 0$, simply a short to ground. Assuming that we close the switch at $t=0$, use the fact that $V_{C}(0)=V_{D D}$ to solve this differential equation for $V_{C}(t)$.
(e) Now, let's suppose that we start with an uncharged capacitor $V_{C}(0)=0$. We apply some constant voltage $V(t)=V_{D D}$ across the circuit. Assuming the switch closes at $t=0$, use your differential equation to solve for $V_{C}(t)$.
(f) Now that you know how the voltage across a capacitor acts over time in an RC circuit, how does the charge in the capacitor act over time? Write your answer as a function of $Q(t)$, and remember that $V_{C}=\frac{Q}{C}$.
2. RC Circuit of Inverter Input Let's now consider a slightly more complicated RC circuit.

Figure 2: Inverter Input
In this problem, we will explore what happens when we change the voltage in between the capacitors.
(a) Suppose $S 1$ has been closed and $S 2$ has been open long enough that the voltage across $C 1$ and $C 2$ have settled to constant values. Suppose at $t=0$, we open $S 1$ and close $S 2$. State the initial conditions of the differential equation (i.e. $V_{1}(0)$ and $V_{2}(0)$), and express the voltages $V_{1}(t)$ and $V_{2}(t)$ in both capacitors as a function of time using the equations you derived from the previous problem.
(b) Suppose $S 2$ has been closed and $S 1$ has been open long enough that the voltage across $C 1$ and $C 2$ have settled. Suppose at $t=0$, we open $S 2$ and close $S 1$. State the initial conditions of the differential equation (i.e. $V_{1}(0)$ and $V_{2}(0)$), and express the voltage in both capacitors as a function of time using the equations you derived from the previous problem.

Contributors:

- Stephen Bailey.
- Lev Tauz.

