EECS 16B Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Discussion 6A

1. Two Capacitors

Consider the circuit below, assume that when $t \leq 0$, both capacitors have no charge ($V_{1}(t=0)=0$ and $\left.V_{2}(t=0)=0\right)$. At $t=0$, the switch closes.

Figure 1: Two Capacitor Circuit with Voltage Source
(a) First, use Kirchoff's Laws and the capacitor equation ($I=\frac{d V}{d t} C$) to find the differential equation of this circuit.
(b) As shown in class, we can write each voltage $V(t)$ as $V_{\text {std }}(t)+V_{\text {trans }}(t)$, where $V_{\text {std }}(t)$ is the steady state function and $V_{\text {trans }}(t)$ is the transient function.
What are the steady state functions of $V_{1}(t)$ and $V_{2}(t)$?
(c) Now, replace $V_{1}(t)=V_{1, \text { std }}(t)+V_{1, \text { trans }}(t)$ and $V_{2}(t)=V_{2, s t d}(t)+V_{2, \text { trans }}(t)$ using the steady state functions you found in the previous part. Also, find the initial conditions of $V_{1, \text { trans }}(t)$ and $V_{2, \text { trans }}(t)$ when $t=0$.
(d) Assume that $C_{1}=C_{2}=1, R_{1}=\frac{1}{3}$, and $R_{2}=\frac{1}{2}$. Diagonalize the matrix A in $\frac{d}{d t}\left(\left[\begin{array}{l}V_{1, t r a n s}(t) \\ V_{2, t r a n s}(t)\end{array}\right]\right)=$ $A\left[\begin{array}{l}V_{1, \text { trans }}(t) \\ V_{2, \text { trans }}(t)\end{array}\right]$
(e) Now that we have diagonalized the matrix, we can now work in the eigenspace. Let us call the transformed $\left[\begin{array}{l}V_{1, \text { trans }}(t) \\ V_{2, \text { trans }}(t)\end{array}\right]$ as $\tilde{V}(t)=\left[\begin{array}{c}\tilde{V}_{1}(t) \\ \tilde{V}_{2}(t)\end{array}\right]$. Solve for $\tilde{V}(t)$. Do not forget about the initial condtions of $\tilde{V}(t)$.
(f) Now that we have $\tilde{V}(t)$, find the solution for $\left[\begin{array}{l}V_{1, \text { trans }}(t) \\ V_{2, \text { trans }}(t)\end{array}\right]$.
(g) For the final step, solve for $\left[\begin{array}{l}V_{1}(t) \\ V_{2}(t)\end{array}\right]$.
(h) Sketch the voltage vs time plots of $V_{1}(t)$ and $V_{2}(t)$.
2. RC Circuit - NAND Let us consider the RC Circuits of a NAND logic gate. This circuit implements the boolean function $\neg(A \wedge B)$.
As shown in the figure, we can replace all the transistors with a resistor and switch but there is also a capacitor between the nMOS gates in the PUN. This capacitor complicates how long it takes for $V_{\text {out }}$ to obtain the correct value. We will see how shortly.
Assume that A and B can only have two voltage values; $V_{D D}$ (1) and Ground (0). A and B can change instantaneously.
(a) Assume for $t<0, A=1$ and $B=0$ for a long enough time. What are the voltages across the two capacitors?
(b) At $t=0$, the inputs change: $A=1$ and $B=1$. What is the resulting circuit of the NAND? Find the differential equation for $V_{\text {out }}$.
(c) Assume that $R_{1}=\frac{1}{3}, R_{2}=1, C=\frac{1}{2}$, and $C_{L}=\frac{1}{3}$. Solve the differential equation in part (b).
(d) Let us try another situation. Assume for $t<0, A=0$ and $B=1$. At $t=0$, the inputs change: $A=1$ and $B=1$. What is the resulting circuit of the NAND? What are the initial conditions for the voltages across the two capacitors? Find the differential equation for $V_{\text {out }}$.
(e) Assume that $R_{1}=\frac{1}{3}, R_{2}=1, C=\frac{1}{2}$, and $C_{L}=\frac{1}{3}$. Solve the differential equation in part (d).

Contributors:

- Lev Tauz.
- Varun Mishra.

Figure 2: NAND

Figure 3: RC Model of NAND

