EECS 16B Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Discussion 6B

1. Complex Algebra

We provide a review of complex algebra to prepare you for the introduction of the phasor domain technique.
(a) A complex number can be written in the rectangular form: $z=x+i y$, where x and y are the real and imaginary parts of z, respectively. How to express the following values in polar forms, $|z| e^{i \theta}$, where $\mid z$ and θ are the magnitude and phase, respectively: $-1, i,-i, \sqrt{i}$, and $\sqrt{-i}$.
(b) Euler's identity. How to represent $\sin \theta$ and $\cos \theta$ using complex numbers?
(c) Show that $|z|=\sqrt{z z^{*}}$, where z^{*} is the complex conjugate of z.

Now let's tackle a numerical problem. Given two complex numbers, $V=3-i 4, I=-(2+i 3)$.
(d) Express V and I in polar form.
(e) Find $V I, V I^{*}, V / I$, and \sqrt{I}.

We have provided you with a table of useful properties of complex numbers.

Complex Number Representation

Rectangular vs polar forms: $z=x+i y=|z| e^{i \theta}$
where $|z|=\sqrt{z z^{*}}=\sqrt{x^{2}+y^{2}}, \theta=\tan ^{-1}(y / x)$. We can also write $x=|z| \cos \theta, y=|z| \sin \theta$.

Euler's identity: $e^{i \theta}=\cos \theta+i \sin \theta$
$\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}, \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}$.
Complex conjugate: $z^{*}=x-i y=|z| e^{-i \theta}$. $(z+w)^{*}=z^{*}+w^{*},(z-w)^{*}=z^{*}-w^{*}$ $(z w)^{*}=z^{*} w^{*},(z / w)^{*}=z^{*} / w^{*}$
$z^{*}=z \Leftrightarrow z$ is real
$\left(z^{n}\right)^{*}=\left(z^{*}\right)^{n}$

Complex Algebra

$$
\text { Let } z_{1}=x_{1}+i y_{1}=\left|z_{1}\right| e^{i \theta_{1}}, z_{2}=x_{2}+i y_{2}=\left|z_{2}\right| e^{i \theta_{2}}
$$

(Note that we adopt the easier representation between rectangular form and polar form.)

$$
\begin{gather*}
\text { Addition: } z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \\
\text { Multiplication: } z_{1} z_{2}=\left|z_{1}\right|\left|z_{2}\right| e^{i\left(\theta_{1}+\theta_{2}\right)} \tag{10}\\
\text { Division: } \frac{z_{1}}{z_{2}}=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} e^{i\left(\theta_{1}-\theta_{2}\right)} \\
\text { Power: } z_{1}^{n}=\left|z_{1}\right|^{n} e^{i n \theta_{1}} \tag{12}\\
z_{1}^{1 / 2}= \pm\left|z_{1}\right|^{1 / 2} e^{i \theta_{1} / 2} \tag{13}
\end{gather*}
$$

Useful Relations

$$
\begin{align*}
-1 & =i^{2}=e^{i \pi}=e^{-i \pi} \tag{14}\\
i & =e^{i \pi / 2}=\sqrt{-1} \tag{15}\\
-i & =-e^{i \pi / 2}=e^{-i \pi / 2} \tag{16}\\
\sqrt{i} & =\left(e^{i \pi / 2}\right)^{1 / 2}= \pm e^{i \pi / 4}=\frac{ \pm(1+i)}{\sqrt{2}} \tag{17}\\
-\sqrt{i} & =\left(e^{-i \pi / 2}\right)^{1 / 2}= \pm e^{i \pi / 4}=\frac{ \pm(1-i)}{\sqrt{2}} \tag{18}
\end{align*}
$$

2. Phasor analysis

Any sinusoidal time-varying function $x(t)$, representing a voltage or a current, can be expressed in the form

$$
\begin{equation*}
x(t)=\mathfrak{R e}\left[X e^{i \omega t}\right] \tag{19}
\end{equation*}
$$

where X is a time-independent function called the phasor counterpart of $x(t)$. Thus, $x(t)$ is defined in the time domain, while its counterpart X is defined in the phasor domain.
The phasor analysis method consists of five steps. Consider the RC circuit below.

The voltage source is given by

$$
\begin{equation*}
v_{s}=12 \sin \left(\omega t-\frac{\pi}{4}\right), \tag{20}
\end{equation*}
$$

with $\omega=10^{3} \mathrm{rad} / \mathrm{s}, R=\sqrt{3} \mathrm{k} \Omega$, and $C=1 \mu F$.
Our goal is to obtain a solution for $i(t)$ with the sinusoidal voltage source v_{s}.
(a) Step 1: Adopt cosine references

All voltages and currents with known sinusoidal functions should be expressed in the standard cosine format. Convert v_{s} into a cosine and write down its phasor representation V_{s}.
(b) Step 2: Transform circuits to phasor domain

The voltage source is represented by its phasor V_{s}. The current $i(t)$ is related to its phasor counterpart I by

$$
\begin{equation*}
i(t)=\mathfrak{R e}\left[I e^{i \omega t}\right] . \tag{21}
\end{equation*}
$$

What are the phasor representations of R and C ?
(c) Step 3: Cast KCL and/or KVL equations in phasor domain

Use Kirchhoff's laws to write down a loop equation that relates all phasors in Step 2.
(d) Step 4: Solve for unknown variables

Solve the equation you derived in Step 3 for I. What is the polar form of $I\left(A e^{i \theta}\right.$, where A is a positive real number)?
(e) Step 5: Transform solutions back to time domain

To return to time domain, we apply the fundamental relation between a sinusoidal function and its phasor counterpart. What is $i(t)$?

Contributors:

- Ming Jin.
- Yen-Sheng Ho.

