EECS 16B Designing Information Devices and Systems II Spring 2017 Murat Arcak and Michel Maharbiz Discussion 0B

1 Notes

1.1 KVL/KCL review

Kirchoff's Circuit Laws are two important laws used for analyzing circuits. Kirchoff's Current Law (KCL) says that the sum of all currents entering a node must equal 0 . For example, in Figure 1, the sum of all of the currents entering node 1 is $I_{1}-I_{2}-I_{3}=0$. Assuming I_{1} and I_{3} are known, we can easily obtain a solvable equation for V_{x} by plugging in Ohm's law: $I_{1}-\frac{V_{x}}{R_{1}}-I_{3}=0$

Figure 1: KCL Circuit
Kirchoff's Voltage Law (KVL) states that the sum of all voltages in a circuit loop must equal 0 . To apply KVL to the circuit shown in Figure 2, we can add up voltages in the loop in the counterclockwise which yields $-V_{1}+V_{x}+V_{y}=0$. Using the relationships $V_{x}=i * R_{1}$ and $i=I_{1}$ we can solve for all unknowns in this circuit. You can use these two laws to solve any circuit that is planar and linear.

Figure 2: KVL Circuit

1.2 $\mathrm{Op}_{\mathrm{p}-\mathrm{amp}}$ Review

Figure 1 shows the equivalent model of an op-amp. It is important to note that this is the general model of an op-amp, so our op-amp golden rules cannot be applied to this unless certain conditions are met.

Conditions Required for Golden Rule:

Figure 3: General Op-Amp Model

- $R_{\text {in }} \rightarrow \infty$
- $R_{\text {out }} \rightarrow 0$
- $A_{v_{\text {in }}} \rightarrow \infty$
- The op-amp must be operated in negative feedback

When conditions 1-3 are met, the op-amp is considered ideal. Figure 2 shows an ideal op-amp in negative feedback, which can be analyzed using the golden rules.

Figure 4: Ideal Op-Amp in Negative Feedback

Golden rules of ideal op-amps in negative feedback:

- No current can flow into the input terminals ($I_{-}=0$ and $I_{+}=0$)
- The $(+)$ and $(-)$ terminals are at the same voltage $\left(V_{+}=V_{-}\right)$

1. $\mathrm{KVL} / \mathrm{KCL}$ review

Use Kirchoff's Laws on the circuit below to find $v_{x}, i_{s}, i_{i n}$ and the power provided by the dependent current source. You can use $R_{1}=2 \Omega, R_{2}=4 \Omega$, and $R_{3}=2 \Omega$. To help with solving the problem, we have already found the voltage difference across R_{1} and R_{3}.

Figure 5: Example Circuit
(a) What is v_{x} ?
(b) What is I_{s} ?
(c) What is $I_{i n}$?
(d) What is the power output of the dependent current source on the far right?
2. Op-amp Consider the following circuit:

Figure 6: Op-amp Summer

What is the output, V_{o}, in terms of V_{1}, V_{2} ? You may assume that R_{1}, R_{2}, and R_{g} are known.

