EE16B - Spring 2017 - Discussion 11A

Murat Arcak and Michel Maharbiz

Sampling theorem

Given a function f that has frequencies from $-\omega_{\max }$ to $\omega_{\max }$, we can sample at points,

$$
\{k \times \Delta\}_{k \in \mathbb{Z}} \text { where } \Delta<\frac{\pi}{\omega_{\max }}
$$

and reconstruct the function f as,

$$
f(x)=\sum_{k \in \mathbb{Z}} f(k \Delta) \operatorname{sinc}\left(\frac{x-k \Delta}{\Delta}\right)
$$

In [1]: \%pylab inline
Populating the interactive namespace from numpy and matplotlib

Question 1

Consider $f(t)$ defined as,

$$
f(t)=\cos (2 \pi t)
$$

where t is in seconds. - What is $\omega_{\max }$ in radians per second? In Hertz? (From now on, frequencies will refer to radians per second.) - What is the smallest sampling Δ that would not result in a perfect reconstruction? - If I sample every Δ_{s} seconds, what is the sampling frequency?

Solutions

- $\omega_{\max }=2 \pi$ in radians per second, which is 1 Hertz.
- $\Delta=\frac{1}{2}$. This is where $\Delta=\frac{\pi}{\omega_{\max }}$.
- $\omega_{s}=\frac{2 \pi}{\Delta s}$.

Now, we will see what happens as we vary the sample period Δ_{s}.

```
In [2]: def f(t):
    return np.cos(2 * np.pi * t)
In [3]: # Time axis
    t = np.array([k * 0.01 for k in range(0, int(10/0.01) + 1)])
    plot(t, f(t))
    xlabel('t')
    ylabel('f(t)')
```

Out [3]: <matplotlib.text.Text at 0x7fdf9bac5e80>

Question 2

We will sample f with $\Delta_{m}=\frac{1}{4}$ and $\Delta_{n}=1$ and do a sinc interpolation on the resulting samples. Let the reconstructed functions be g_{m} and g_{n}.

```
In [5]: Delta_m = 1/4
    Delta_n = 1
    gm = t * 0
    gn = t * 0
    for k in range(0, int(floor(10/Delta_m)) + 1):
        gm[int(k * Delta_m/t[1])] = f(k * Delta_m)
    for k in range(0, int(floor(10/Delta_n)) + 1):
        gn[int(k * Delta_n/t[1])] = f(k * Delta_n)
    fig, axes = plt.subplots(nrows=4, ncols=1)
    fig.set_size_inches(10, 10)
    plt.subplot(4, 1, 1)
    plot(t, f(t))
    title('Original')
    plt.subplot(4, 1, 2)
    plot(t, gm, color='red')
    title('Delta_m')
```

```
plt.subplot(4, 1, 3)
plot(t, gn, color='green')
title('Delta_n')
plt.subplot(4, 1, 4)
plot(t, f(t))
plot(t, gm, color='red')
plot(t, gn, color='green')
title('Overlay')
fig.tight_layout()
```


- Have we staisfied the Nyquist limit in any case?
- What is the expected highest frequency of the sinc function,

$$
\operatorname{sinc}\left(\frac{t-\Delta_{n} k}{\Delta_{n}}\right) ?
$$

- Based on this answer, can you think of any periodic function that has a frequencies less than or equal to π that samples the same as g_{n} ?

Solutions

- Δ_{m} satisfies Nyquist. Δ_{n} does not.
- The sinc functions used to reconstruct g_{n} is,

$$
\left\{\operatorname{sinc}\left(\frac{t-k}{1}\right)\right\}_{k \in \mathbb{Z}}
$$

These functions can represent a maximum frequency of π.

- Since the frequencies vary from 0 to π, the smallest period that can be represented is 2 . That is to say, functions of period <2 cannot be captured with the sinc function derived from Δ_{n}. Since the period must be greater than 2 , no sine or cosin function can give the same samples as g_{n}. This means suggests looking into a fairly trivial kind of periodic function: a constant. In particular, the answer to this problem is the constant function that is 1 everywhere.

Question 3

Consider the function $f(x)=\sin (0.2 \pi x)$. - At what period T should we sample so that sinc interpolation recovers a function that is identically zero? - At what period T should we sample so that sinc interpolation recovers the function $g(x)=-\sin \left(\frac{\pi}{15} x\right)$?

Solutions

- $\mathrm{T}=5$
- $\mathrm{T}=7.5$

