EECS 16B Designing Information Devices and Systems II Spring 2017 Murat Arcak and Michel Maharbiz Discussion 13B

1 Questions

1. DFT

(a) Compute the DFT coefficients of $x_{1}[t]=\cos \left(\frac{2 \pi}{6} t\right)$ where $t \in\{0,1, \ldots, 5\}$.
(b) Plot the time domain representation and the magnitude and phase for the DFT-basis representation of \vec{x}_{1}.
(c) Compute the DFT coefficients of $x_{2}[t]=\cos \left(\frac{4 \pi}{6} t\right)$ where $t \in\{0,1, \ldots, 5\}$.
(d) Plot the time-domain representation and the magnitude and phase for the DFT-basis representation of \vec{x}_{2}.
(e) How about the general case, $x_{k}[t]=\cos \left(\frac{2 \pi}{6} k t\right)$, where $t \in\{0,1, \ldots, 5\}$?
(f) Compute the DFT coefficients of $\vec{s}=\left[\begin{array}{llllll}1 & 0 & 1 & 0 & 1 & 0\end{array}\right]^{T}$.
(g) Compute the DFT coefficients of $y_{1}[t]=\cos \left(\frac{2 \pi}{6} t-\pi\right)$ where $t \in\{0,1, \ldots, 5\}$.

2. DFT Sampling Matching

Circle your answer. There is no need to give any justification.
(a) Given the time domain signal below,

If we sample the signal with frequency 3 Hz , which one is the DFT coefficients of the corresponding sampled signal?

(b) Given the time domain signal below,

Now, we have sampled the signal with a different frequency (note also that we have a new signal with 2 periods):

which one is the corresponding DFT coefficients?

Contributors:

- Yen-Sheng Ho.
- Harrison Wang.

