EECS 16B Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Discussion 10A

1. Controls

Consider the following system:

$$
\begin{aligned}
& \frac{d x_{1}(t)}{d t}=-x_{1}(t)^{2}+x_{2}(t) u(t) \\
& \frac{d x_{2}(t)}{d t}=2 x_{1}(t)-2 x_{2}(t) u(t)
\end{aligned}
$$

(a) Choose states and write a state space model for the system in the form $\frac{d \vec{x}(t)}{d t}=f(\vec{x}(t), u(t))$.
(b) Find the equilibrium \vec{x}^{*} and input u^{*} when $x_{2}^{*}=1$ and $u^{*}=1$.
(c) Linearize the system around the equilibrium state and input from the previous part. Your answer should be in the form $\frac{d \vec{x}(t)}{d t}=A \overrightarrow{\tilde{x}}(t)+B \tilde{u}(t)$.
(d) Is this system controllable? Is it stable?
(e) Convert this system into controller canonical form. Your answer should be in the form $\frac{d \vec{z}(t)}{d t}=\tilde{A} \vec{z}(t)+$ $\tilde{B} \tilde{u}(t)$, where $\vec{z}(t)=T \overrightarrow{\tilde{x}}(t)$.
(f) Find a state feedback controller \tilde{K} to place both system eigenvalues at $\lambda=-1$, where $\tilde{u}(t)=-\tilde{K} \vec{z}(t)$.
(g) Convert this feedback controller back into the non-CCF domain, i.e., find K, such that $\tilde{u}(t)=-K \overrightarrow{\tilde{x}}(t)$. (Hint: Remember that $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.)
(h) Is our system observable? Our observed output is $y(t)=-\tilde{x}_{1}(t)$.
(i) Construct an observer system for this system.
(j) How does the error evolve over time?
(k) Pick L, such that our error signals converge to 0 . Place both eigenvalues at $\lambda=-1$ again.
(l) Write out the entire closed-loop system with feedback control and observer.

Contributors:

- Kevin Chen.

