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1 Introduction

So far we learned that the key enabler of all the digital electronics around us such as smart phones, laptops,
etc. is the Transistors! Now that we know how digital circuits and CMOS gates operate, we can ask many
questions like:

• How fast a computer operates? (How fast a CMOS gate switch?)

• Why smart phones ran out of the battery quickly?! (How much energy do CMOS gates consume when
switching (or even when not)?

• What limits the complexity of processing can be done with this circuits? How much space do they
take up?

We will tackle the first two question regarding switching speed and energy in this lecture, but first we need
a quick review on capacitors.

2 Capacitors

Any time we have two conductive materials separated by a dielectric (i.e. an insulator), we have the potential
to store electrical charge across the two conductors. This is called a capacitance (the device is a capacitor)
and this way we can store energy. Examples are touch-screen pixels from EE16A labs, two metal wires
close to each other, etc.

A capacitor’s symbol and its voltage/current is shown above. The following is always true about the capac-
itors:

1. The stored electrical charge can be derived as : qC(t) =CvC(t)⇒ iC(t) =C dvC(t)
dt [Amps] (This hold

since by definition i = dq
dt )

2. vC(t) can never change instantly (i.e. it can never be discontinuous). To see why, examine 1; if vC(t)
is discontinuous, then dvC(t)

dt → ∞ at then discontinuity and ic→ ∞ which is not feasible (why?).

3. The energy stored in a capacitor at any instant in time is: UC = 1
2CvC

2(t) [Joules]
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3 Capacitors & Transistors

It turns out that whenever we make a transistor, there are always capacitances associated with the nodes. This
is unavoidable and unwanted and arises from solid state physics (explained in the last lecture transistor’s
physics section). In this class, we will model these capacitances as a single capacitor between Vout and
GND. This capacitance is mainly contributed by the capacitances of NMOS and PMOS transistors of the
logic gate (inverter in this example) itself plus the transistor capacitances of the next logical gate loading
this stage (we assumed another inverter in this lecture). The actual wires connecting gates together will also
add to this capacitance. This is a simple model, but it works surprisingly well enough to answer questions
raised at the beginning of this lecture.

4 RC Circuits

Let’s look at the inverter illustrated above more carefully and assume Vin = 0V and thus Vout =V DD and the
transistor has been in this state for a long time (since t =−∞).

Now, at t = 0, we instantly switch Vin to V DD. We know, eventually Vout = 0V . if there were no capacitance,
the output would change instantly because the equations have no concept of time! but considering the
capacitance (Cout), things slow down, let’s see why? For t > 0:

Notice vout(t) = vC(t) and i = −ic = −C dvC
dt . Using KVL we know vC = vR. By substituting capacitor’s

current equation and ohm’s law (vR = iR), we have:

vC = iR =−RC
dvC

dt
⇒ vC +RC

dvC

dt
= 0⇒ vout +RC

dvout

dt
= 0 (1)
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Here we will see actually how can transistor capacitors lumped together and modeled as a single
capacitor at the output (Cout). Assume the logic gate, an inverter, is followed by another inverter:

Using the transistor’s model with resistor and capacitor, the circuit model is the following:

Now we can write the KCL and use ohm’s law:

i+ iC,W + iC,N + iC,P = 0⇒ vR

R
+CW

dvC,W

dt
+CN

dvC,N

dt
+CP

dvC,P

dt
= 0

Again, since PMOS is OFF, it does not impact the final circuit model in this case. Now we can
replace voltages in terms of vout and V DD:

vout

R
+CW

dvout

dt
+CN

dvout

dt
+CP

d(vout −V DD)

dt
= 0

Notice d(vout−V DD)
dt = dvout

dt −
d(V DD)

dt and since V DD is at a fixed value which does not change in time
d(V DD)

dt = 0, thus the RC equation for this circuit can be reduced to:

vout

R
+CW

dvout

dt
+CN

dvout

dt
+CP

dvout

dt
= 0⇒ vout +R(CW +CN +CP)

dvout

dt
= 0

So we can simply use a single capacitance model with Cout = CW +CN +CP and the differential
equations is still a homogeneous 1st order D.E.

This is a first order differential equation (D.E.). The general form is: dx
dt +ax = 0. Because in this form

the right hand side (RHS) is zero, it’s called a homogenous 1st order D.E.. The notation of derivatives are
sometimes shown by dots as well ( dx

dt = ẋ, d2x
dt2 = ẍ, and so on).
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5 Solving 1st Order D.E.

As stated above these equations have a general form of: d f
dt +a f = 0. If we rewrite it in the following format:

d
dt ( f (t)) = −a f (t). What will this equation remind you from linear algebra topics studied in 16A? Eigen-
values!. Remember the eigenvectors of a matrix A were solutions of Av = λv equation. In the differential
equations, d

dt can be seen as a derivative operator and thus here we are looking for eigenfunctions of the
derivative operator with the eigenvalues of −a. It turns out that the eigenfunctions are in the general form
of an exponential function: f (t) = ekt . Next figure illustrates various forms of these functions for different
k values (u(t) denotes a step function in this figure):

The unique property of the exponential functions is that:

d f (t)
dt

= k · ekt = k f (t)

Hence a function in the form of x(t) = c1ekt + c0 can be an answer to our 1st order D.E.:

d f (t)
dt

=−a f (t)⇒ c1kekt =−ac1ekt −ac0

Since this equation should hold for every t, c0 = 0 and k = −a (Prove this yourself). Thus the solution to
d f
dt +a f = 0 is in the form of ce−at , where c can be any number.

Going back to the RC equation for vout , the solution for t > 0 will be:

vout(t) = vout(0)e−t/RC

where vout(0) is the output voltage at t = 0 (remember the voltage across a capacitor should transit continu-
ously). In the case of an inverter vout(0) =V DD since input was low before switching. The value of RC is
called time constance and shown with τ = RC. This parameter determines how fast the exponential decays.

6 Natural Response of a Charged Capacitor

Let’s analyze the RC circuit, where a capacitor is charged to VS and for t > 0 it starts discharging through a
resistor of R.
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As we already saw, the voltage over the capacitor is:

vC(t) =VSe−t/τ

where τ = RC. Capacitor’s current can be derived using iC(t) =C dvC(t)
dt as:

iC(t) =C
dvC(t)

dt
=−C

VS

τ
e−t/τ =−VS

R
e−t/τ

Stored energy in the capacitor can be expressed as:

UC(t) =
1
2

Cv2
C(t) =

1
2

CVS
2e−2t/τ

And the power dissipated in the circuit is:

P(t) = iC(t)vC(t) =−
VS

2

R
e−2t/τ

7 General Solution of RC Circuits with DC Sources

Now consider a new circuit where R and C are connected in series, the capacitor is charged to VS1 and at the
time t = 0, we switch the capacitor’s terminal to another voltage source with VS2 volt.

Before the switch is flipped at time t = 0, vC(0) =Vs1 (why?). Now we can write KVL for t > 0 to find the
differential equation associated with this circuit:

−VS2 + vR + vC = 0⇒−VS2 + iCR+ vC = 0⇒−VS2 +RC
dvC

dt
+ vC = 0⇒ dvC

dt
+

1
RC

vC =
VS2

RC

This D.E. is inhomogeneous in this case since the RHS is non-zero. The general form of an inhomogeneous
1st order D.E. is:

v̇C +avC = b

There are two ways to derive the solution to this equation:
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1. vC(t) = vC(0)e−t/RC + b
a(1− e−t/RC)

The first terms is the decaying exponential of the initial voltage due to VS1 source. The second term is
the exponential of the capacitor charging up to VS2. Notice that at t→ ∞, the capacitors will look like
an open (because there is only a DC source), so by KVL VS2 = vC(∞) (Note that b/a =VS2 = vC(∞)).
In other words, the solution is the linear superposition of the initial charge of the capacitor discharging
and the VS2 supply charging the capacitor up to VS2.

2. vC(t) = vC(∞)+ [vC(0)− vC(∞)]e−t/RC

The first term is the steady state value and the other term is the transient response of vC(t). This is
equivalent to the previous solution, but is often faster to write if you know vC(0), vC(∞), and RC. All
three of them are sometimes discoverable by inspection.

Finally, knowing how RC circuits work and their transient response, we can answer the questions we asked
at the beginning of this lecture. Regarding the computation speed, we learned that the inverter or any other
logic gate cannot switch infinitely fast. Due to the logic delays to settle the output voltage the computation
cannot run very fast neither!

The delay of each logic gate is always defined as being from 50% of the input signal to the 50% of
the output. In CMOS gates, we know that values will be finally either 0V or V DD and thus the delay,
td is normally defined as the time difference of input and output reaching V DD/2. This definition is
used because we do not just have one gate, but actually many of them in a chain, and we want to be
able to say that the delay of the chain is the sum of the delays of the individual stages (which implies
that you need to select delay as being 50% to 50%).

Going back to the second question on the energy required for a logic gate to operate, let’s see how much
energy we need to switch an inverter gate (the simplest CMOS gate)?

The energy required to charge the capacitor to VDD is provided by the voltage source (V DD). There are two
approaches to calculate it:
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1. We know the total charge to needed to charge up the capacitance to VDD is QC = Cout ·VDD. By
definition the energy required to move the Q charge between two point with VDD voltage across is
Q ·VDD. Thus total dissipated energy by the supply to charge the capacitor is WDD =CoutVDD

2.

2. We know the power given by any element to the circuit is i(t)v(t). Also, the energy can be calculated
by integrating power over time, hence:

WDD =
∫

iDD(t)vDD(t)dt =
∫

iC(t)V DDdt =V DD
∫ dqC(t)

dt
dt =VDD(qC(∞)−qC(0))

⇒WDD =VDD(CoutVDD−0) =CoutVDD
2

Question: What’s the energy stored in the capacitor after charging it to V DD? Where does the rest of energy
dissipated by the battery go?

Consequently, any computation and process step requires certain amount of energy and this energy is drawn
from the supplies (like batteries).
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