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Lectures 6B & 7A: Overview Slides

Controller Canonical Form
Observability
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Controller Canonical Form (CCF)

● Recall prior example:

● char. poly.:                      : nice simple formula
● Generalization: Controller Canonical Form (CCF)

●   

● char poly:
➔ not difficult to show this (though a bit tedious)

● apply determinant formula using minors to the last row 
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Feedback on CCF

● System:                            , with          in CCF

● apply feedback   : 

➔   

● char poly:

➔ its roots are the eigenvalues that determine stability
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Assigning Desired Roots
● Suppose you want l

1
, l

2
, …, l

n
 to be the roots

● the char. poly. should equal:
➔ (why?) 

● Expand out  

●  

● equate coefficients against

➔  
these feedback coeffs
will place the eigenvalues
at the desired locations

We just showed: if a system is in
CCF, feedback can move its
eigenvalues to any desired locations
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CCF and Eigenvalue Placement: Examples

●

● char. poly.:  

● desired char. poly.:

➔ say we want: 

● then

➔ or, if we want:

●   

●  
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Converting Systems to CCF
● But CCF seems a very special/restrictive form …

● … key question: what systems are in CCF?
● A: any controllable system can be converted to CCF! 
● Here’s how you do it:

1. Given any state-space system:

2. Form its controllability matrix:

3. Compute its inverse: 

4. Grab the last row of       : call it   

●                                ;    (   is a col. vector;      is a row vector)

full rank if system controllable;
and square, hence invertible
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Converting Systems to CCF (contd.)

5. Form the basis transformation matrix

6. Define

7. Write the system in terms of      :

●   

8.             will be in CCF!

●  Proof: see the handwritten notes

T will be full rank, hence
non-singular and invertible

equivalent to the
original system:

is the same 

similarity
transformation
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call this x
2
(t)

call this u(t), the input

x1(t) + d

BIBO UNSTABLE

Example: co-operative car control

car 1car 2

position: p
1

velocity: v
1

accel: a
1

position: p
2

velocity: v
2

accel: a
2

gap: p
1
- p

2

desired gap: d > 0

define 
 x

1
(t) = p

1
(t) - p

2
(t) - d

with IC = [0, 0]T and
u(t) = -e, the cars
will hit each other in
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velocity feedbackposition feedback

Co-op. Car Control (contd.)

● introduce state feedback:
● eigenvalues:

●   

● stabilization
●                           ensures eigenvalues have -ve real parts

● small errors in the acceleration u(t) → only 
small changes to the desired distance d

● see handwritten notes for details

 both sensed by Doppler radar
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Controllable Systems can be Stabilized

● So far, we have shown that:
● CCF systems can be stabilized by feedback
● Controllable systems can be put in CCF

● → Controllable systs. can be stabilized by feedback
● but not necessary to first convert to CCF to stabilize

➔ just write out the char. poly. of               directly
● will be a linear expression in k

1
, k

2
, …, k

n

➔ match coeffs. of lk against those of 
● will obtain a linear system of equations in   :

➔ solve                for    (usually numerically) determined by the entries
of A, b, and by l

1
, …, l

n
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Observability [Back to Discrete]
● suppose we have just a SCALAR output

● i.e., don’t have access to all of        for feedback
● can we recover       just from observations of      ?

● More precisely:
● suppose we know: A,   ,     and u[t]

➔ and can measure y(t)
● can we recover       ?

+

ignore feedforward term (for simplicity)

If yes: the system is
called OBSERVABLE
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The Observability Matrix

● We know that 

● Suppose u[t]=0
● then                         . Write out                    :

➔     

we know (or can calculate) these

the only unknown

observability matrix (nxn) must be full-rank/non-singular/invertible to recover
        uniquely from measurements of y(t)
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Observability: An Example

●    

● Each application of A rotates

                                      by   

this is a “rotation matrix”  - call it A
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Observability: Example (contd.)

●                                         ,

● Observability matrix: 

● Determinant of O:
● non-zero if                               → observable
● 0 if            → not observable

➔ cannot recover x
2
 uniquely
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Observers

● Can we make a system that recovers       from y[t] 
in real time?

● (we can use our knowledge of A,   , u[t] – and y[t])
● YES! (if the system is observable – as it will turn out)

● first: make a clone of the system
● next: incorporate the difference between the outputs 

of the actual system and the clone

estimate of 

output of the clone
called an OBSERVER 
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Observers – Why/How They Work

● Observer: 

●  Define a state prediction error:
● then we can derive (move to xournal):

➔   
● would like               as t increases (i.e.,                 )

➔ choose    to make the eigenvalues of              stable!
● strong analogy w controllability (recall              )

➔ evs of              = evs of                 → 

● i.e., can always make              stable if                
is controllable (using previous controllability + feedback result)

error in predicted output
(scalar)

error feedback
vector - TBD
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Observers – Why/How (contd.)

●                controllable →                                           
 must be full rank

● →                                                   must be full rank

● →                               must be full rank

● Conclusion: if a system is observable, we can 
build an observer for it whose estimate       will 
approximate       more and more closely with t

 just the OBSERVABILITY matrix 
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Observer: Rotation Matrix Example

●                                         ,

● example:         →                 →

● side note: eigenvalues of A:       → BIBO unstable

● let             , then

➔ eigenvalues (see the notes):

● and can easily show:
● i.e., can set    to obtain any desired eigenvalues

● warning: if complex, ensure evs are complex conjugates
➔ what will happen if you don’t?

full rank
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Observer: Rot. Matrix Example (contd.)

●                                         ,

● now try:          →                   → not observable (recall)

●       

➔ eigenvalues (see the notes):

 cannot be changed/stabilized using 
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Observability: The Continuous Case

● Observability for C.T. state-space systems
● and implications for placing observer eigenvalues

● EXACTLY THE SAME CRITERIA

●                                must be full rank

● Stability for C.T. means Re(eigenvalues) < 0
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Observers: Accurate Positioning

● Physical motion is inherently marginally stable
● due to the relationship between position, velocity and 

acceleration
➔   

● small error in a → growing error in v
● small error in v → growing error in x

● You are in a car in a featureless desert
● you know the position where you started
● you record your acceleration (along x and y directions)
● to estimate your current position

➔ you integrate accel./velocity to predict your current position
➔ but inevitable small errors (eg, play in accelerator) make your 

predicted position more and more inaccurate (m. stability)
● soon, your prediction becomes completely useless – miles from where 

you really are
● NOT A VERY PRACTICALLY USEFUL WAY TO LOCATE YOURSELF
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Observers for Positioning (contd.)
● Enter GPS

● you have a GPS receiver and position calculator
➔ but GPS isn’t perfectly accurate either (though much better than 

our integration technique, aka “dead reckoning”)
● can easily be a few 10s of feet off

● Can we combine dead reckoning and GPS
● for better accuracy than GPS alone?

● YES: feed GPS position data into an observerobserver!
● stabilize the observer by choosing    wisely
● even with perpetual small GPS and acceleration errors

➔ the observer’s estimate is far better than just the GPS alone!*
● This is what all serious navigational systems use

● with an additional twist:    keeps updating, becomes      
● this is the famous KALMAN FILTERKALMAN FILTER

➔ used in all rockets, drones, autonomous cars, ships, ...

* see the notes for the math



EE16B, Spring 2018, Lectures on CCF and Observability (Roychowdhury) Slide 23

Rudolf Kálmán 
“inventor” of control theory: 1950s/60s

● state-space representations
● stability, controllability, observability and implications
● Kalman filter

● initially received with “vast skepticism” - not accepted for publication!
● later adopted by the Apollo rocket program, the Space Shuttle, 

submarines, cruise missiles, UAVs/drones, autonomous vehicles, ...
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Who Invented Eigendecomposition?

James Joseph Sylvester (1814-97) Arthur Cayley (1821-95)

also coined the
term “matrix”

Cayley-Hamilton
Theorem

1852 - 1858
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Who Invented Matrices?
● known and used in ChinaChina - before 100BC (!)

● explained in Nine Chapters of the Mathematical Art (1000-100 BC)
➔ used to solve simultaneous eqns; they knew about determinants

● 1545: brought from China to Italy (by Cardano)
● 1683: Seki (“Japan’s Newton”) used matrices
● developed in Europe by Gauss and many others

● finally, into its modern form by Cayley Cayley (mid 1800s) 

CayleySekiGaussCardano
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Charles Proteus Steinmetz
inventor of the phasor

● “Complex Quantities and their Use in Electrical 
Engineering”, July 1893

● revolutionized AC circuit/transmission calculations

● suffered from hereditary dwarfism, hunchback, and hip dysplasia 


