EE16B, Spring 2018 **UC Berkeley EECS** Maharbiz and Roychowdhury Lectures 6B & 7A: Overview Slides **Controller Canonical Form Observability**

Controller Canonical Form (CCF)

- Recall prior example: $\vec{x}[t+1] = \begin{vmatrix} 0 & 1 \\ a_1 & a_2 \end{vmatrix} \vec{x}[t] + \begin{vmatrix} 0 \\ 1 \end{vmatrix} u[t]$
 - char. poly.: $\lambda^2 a_2\lambda a_1$: nice simple formula
- Generalization: Controller Canonical Form (CCF)

- char poly: $\lambda^n a_n \lambda^{n-1} a_{n-1} \lambda^{n-2} \cdots a_2 \lambda a_1$
 - not difficult to show this (though a bit tedious)
 - apply determinant formula using minors to the last row

Feedback on CCF

• System: $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t) + \vec{b}u(t)$, with (A, \vec{b}) in CCF • apply feedback \vec{k} : $A \mapsto A - \vec{b}\vec{k}^T$

• char poly: $\lambda^n - (a_n - k_n)\lambda^{n-1} - (a_{n-1} - k_{n-1})\lambda^{n-2}$ $- \cdots - (a_2 - k_2)\lambda - (a_1 - k_1)$

its roots are the eigenvalues that determine stability

Assigning Desired Roots

- Suppose you want $\lambda_1, \lambda_2, \dots, \lambda_n$ to be the roots
 - the char. poly. should equal: (λ − λ₁)(λ − λ₂) · · · (λ − λ_n)
 → (why?)
- Expand out $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n) \equiv \prod_{i=1}^{n} (\lambda \lambda_i)$ • $\prod_{i=1}^{n} (\lambda - \lambda_i) = \lambda^n - (\lambda_1 + \lambda_2 + \cdots + \lambda_n) \lambda^{n-1}$
 - $i=1 + [\lambda_1(\lambda_2+\lambda_3+\dots+\lambda_n)+\lambda_2(\lambda_3+\lambda_4+\dots+\lambda_n) + \dots + \lambda_{n-1}\lambda_n]\lambda^{n-2} + \dots + (-1)^n\lambda_1\lambda_2\dots\lambda_n \gamma_1$
 - <u>equate coefficients</u> against $\lambda^n (a_n k_n)\lambda^{n-1} (a_{n-1} k_{n-1})\lambda^{n-2}$

CCF and Eigenvalue Placement: Examples

•
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \vec{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \Rightarrow A - \vec{b}\vec{k}^T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 - k_1 & 2 - k_2 & 3 - k_3 \end{bmatrix}$$

- char. poly.: $\lambda^3 (3-k_3)\lambda^2 (2-k_2)\lambda (1-k_1)$
- desired char. poly.: $(\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3)$
 - → say we want: $\lambda_1 = \lambda_2 = \lambda_3 = 0 \implies (\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3) \equiv \lambda^3$
 - then $k_3 = 3, k_2 = 2, k_1 = 1$
 - → or, if we want: $\lambda_1 = -1, \lambda_2 = -2, \lambda_3 = -3$
 - $(\lambda \lambda_1)(\lambda \lambda_2)(\lambda \lambda_3) \equiv \lambda^3 + 6\lambda^2 + 11\lambda + 6$

•
$$-(3-k_3) = 6$$

 $-(2-k_2) = 11$
 $-(1-k_1) = 6$ $\Rightarrow \begin{cases} k_3 = 9\\ k_2 = 13\\ k_1 = 7 \end{cases}$

Converting Systems to CCF

- But CCF seems a very special/restrictive form ...
 - ... key question: what systems are in CCF?
- A: any controllable system can be converted to CCF!
- Here's how you do it:
 - **1.** Given any state-space system: $\frac{d}{dt}\vec{x}(t) = A\vec{x}(t) + \vec{b}u(t)$
 - **2.** Form its controllability matrix: $R_n \triangleq \left[\vec{b}, A\vec{b}, A^2\vec{b}, \cdots, A^{n-1}\vec{b}\right]$
 - **3.** Compute its inverse: R_n^{-1}

full rank if system controllable; and square, hence invertible

4. Grab the last row of R_n^{-1} : call it \bar{q}^T

$$(ec{q}$$
 is a col. vector; $ec{q}^T$ is a row vector)

Converting Systems to CCF (contd.)

T will be full rank, hence _ non-singular and invertible

- 5. Form the basis transformation matrix $T \triangleq$
- **6.** Define $\vec{z}(t) = T\vec{x}(t) \Leftrightarrow \vec{x}(t) = T^{-1}\vec{z}(t)$

7. Write the system in terms of $\vec{z}(t)$:

 $\frac{d}{dt}\vec{z}(t) = \underbrace{TAT^{-1}}_{\hat{A}}\vec{z}(t) + \underbrace{T\vec{b}}_{\hat{b}}\boldsymbol{u}(t)$ equivalent to the original system: $u(t) \mapsto \vec{x}(t)$ is the same $\vec{x}(t) = T^{-1}\vec{z}(t)$ Similarity

8. (\hat{A}, \vec{b}) will be in CCF!

• Proof: see the handwritten notes

 $\vec{q}^T A$

 $\vec{q}^T A^2$

ransformation

Co-op. Car Control (contd.)

- introduce state feedback:
- eigenvalues:

•
$$\lambda_{1,2} = -\frac{k_2}{2} \pm \frac{1}{2}\sqrt{k_2^2 - 4k_1}$$

- stabilization
 - $k_2 > 0$, $k_1 > 0$ ensures eigenvalues have -ve real parts
- small errors in the acceleration u(t) \rightarrow only small changes to the desired distance δ
 - see handwritten notes for details

Controllable Systems can be Stabilized

- So far, we have shown that:
 - CCF systems can be stabilized by feedback
 - Controllable systems can be put in CCF
- → Controllable systs. can be stabilized by feedback
 - but <u>not necessary</u> to first convert to CCF to stabilize
 - just write out the char. poly. of $A \vec{b}\vec{k}^T$ directly
 - will be a linear expression in k₁, k₂, ..., k_n
 - → match coeffs. of λ^k against those of $(\lambda \lambda_1)(\lambda \lambda_2) \cdots (\lambda \lambda_n)$
 - will obtain a linear system of equations in \vec{k} : $M\vec{k} = \vec{r}$
 - → solve $M\vec{k} = \vec{r}$ for \vec{k} (usually numerically) determined by the entries of A, b, and by $\lambda_1, ..., \lambda_n$

Observability [Back to Discrete]

- suppose we have just a SCALAR output y[t]
 - i.e., don't have access to all of $\vec{x}[t]$ for feedback
 - can we recover $\vec{x}[t]$ just from observations of y[t]?

$$u[t] \xrightarrow{\vec{x}[t+1] = A\vec{x}[t] + \vec{b}u[t]} \xrightarrow{\vec{x}[t]} \vec{c}^T \xrightarrow{\vec{y}[t]} \xrightarrow{\vec{v}[t]} \vec{c}^T \xrightarrow{\vec{v}[t]} \xrightarrow{\vec{v}[t]} \overrightarrow{c}^T \xrightarrow{\vec{v}[t]} \xrightarrow{\vec{v}[t]} \overrightarrow{c}^T \xrightarrow{\vec{v}[t]} \xrightarrow{\vec{v}[t]} \overrightarrow{c}^T \xrightarrow{\vec{v}[t]} \xrightarrow{\vec{v}[t]} \xrightarrow{\vec{v}[t]} \overrightarrow{c}^T \xrightarrow{\vec{v}[t]} \xrightarrow{\vec{$$

- More precisely:
 - suppose we know: A, \vec{b} , \vec{c}^T and u[t]
 - and can measure y(t)
 - can we recover $\vec{x}[t]$?

EE16B, Spring 2018, Lectures on CCF and Observability (Roychowdhury)

 $y[t] = \vec{c}^T \vec{x}[t] + du[t]$

If yes: the system is

called OBSERVABLE

The Observability Matrix

• We know that $\vec{x}[t] = A^{t-1}\vec{x}[0] + \sum_{i=1}^{t} A^{t-i}\vec{b}u[i-1]$ the only unknown

- Suppose u[t]=0
 - then $\vec{x}[t] = A^{t-1}\vec{x}[0]$. Write out $y[t] = \vec{c}^T\vec{x}[t]$:

Observability: An Example

by θ

Each application of A rotates

Observability: Example (contd.)

$$\begin{bmatrix} x_1[t+1] \\ x_2[t+1] \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1[t] \\ x_2[t] \end{bmatrix}, \quad y[t] = x_1[t] = \begin{bmatrix} 1 & 0 \end{bmatrix} \vec{x}[t]$$
$$\vec{c}^T$$

- Observability matrix: $O \triangleq \begin{bmatrix} \leftarrow \vec{c}^T \rightarrow \\ \leftarrow \vec{c}^T A \rightarrow \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \cos(\theta) & -\sin(\theta) \end{bmatrix}$
- Determinant of O: $det(O) = -\sin(\theta)$
 - non-zero if $\theta \neq 0, \pi, 2\pi, \cdots, i\pi \rightarrow \text{observable}$
 - 0 if $\theta = i\pi \rightarrow$ not observable
 - cannot recover x₂ uniquely

Observers

- Can we make a system that recovers x
 [t] from y[t] in real time?
 - (we can use our knowledge of A, \vec{b} , u[t] and y[t])
- YES! (if the system is observable as it will turn out)
 - first: make a clone of the system
 - next: incorporate the difference between the outputs of the actual system and the clone

Observers – Why/How They Work

- **Observer:** $\hat{\vec{x}}[t+1] = A\hat{\vec{x}}[t] + \vec{b}u[t] + \vec{l}(\vec{c}^T\hat{\vec{x}}[t] y[t])$ error feedback vector - TBD
 error in predicted output (scalar)
- Define a state prediction error: $\vec{\epsilon}[t] \triangleq \hat{\vec{x}}[t] \vec{x}[t]$
 - then we can derive (move to xournal):
 - $\rightarrow \vec{\epsilon}[t+1] = (A + \vec{l} \vec{c}^T) \vec{\epsilon}[t]$
 - would like $\vec{\epsilon}[t] \to 0$ as t increases (i.e., $\hat{\vec{x}}[t] \to \vec{x}[t]$)
 - → choose \vec{l} to make the eigenvalues of $A + \vec{l} \vec{c}^T$ stable!
 - strong analogy w controllability (recall $A \vec{b} \, \vec{k}^T$)
 - → evs of $A + \vec{l} \, \vec{c}^T$ = evs of $A^T + \vec{c} \, \vec{l}^T \rightarrow -\vec{c} \mapsto \vec{b}, \quad \vec{l}^T \mapsto \vec{k}^T$
- i.e., can always make $A + \vec{l} \vec{c}^T$ stable if $(A^T, -\vec{c})$ is controllable (using previous controllability + feedback result)

Observers – Why/How (contd.)

- $(A^T, -\vec{c})$ controllable $\rightarrow -\left[\vec{c} | A^T \vec{c} | \cdots | (A^T)^{n-2} \vec{c} | (A^T)^{n-1} \vec{c}\right]$ must be full rank
 - $\rightarrow \left[\vec{c} \mid A^T \vec{c} \mid \cdots \mid (A^T)^{n-2} \vec{c} \mid (A^T)^{n-1} \vec{c}\right]^T$ must be full rank

• Conclusion: if a system is observable, we can build an observer for it whose estimate $\hat{\vec{x}[t]}$ will approximate $\vec{x[t]}$ more and more closely with t

Observer: Rotation Matrix Example

• side note: eigenvalues of A: $\pm \jmath \rightarrow BIBO$ unstable

• let
$$\vec{l} = \begin{bmatrix} l_1 \\ l_2 \end{bmatrix}$$
, then $A + \vec{l}\vec{c}^T = \begin{bmatrix} l_1 & -1 \\ 1 + l_2 & 0 \end{bmatrix}$

→ eigenvalues (see the notes): $\lambda_{1,2} = \frac{l_1}{2} \pm \frac{l_1^2 - 4(1+l_2)}{2}$

- and can easily show: $l_1 = \lambda_1 + \lambda_2$, $l_2 = \lambda_1 \lambda_2 1$
- i.e., can set \vec{l} to obtain any desired eigenvalues
 - warning: if complex, ensure evs are complex conjugates
 - what will happen if you don't?

EE16B, Spring 2018, Lectures on CCF and Observability (Roychowdhury)

full rank

Observer: Rot. Matrix Example (contd.)

•
$$\begin{bmatrix} x_1[t+1]\\ x_2[t+1] \end{bmatrix} = \underbrace{\begin{bmatrix} \cos(\theta) & -\sin(\theta)\\ \sin(\theta) & \cos(\theta) \end{bmatrix}}_{A} \begin{bmatrix} x_1[t]\\ x_2[t] \end{bmatrix}$$
, $y[t] = x_1[t] = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{\vec{c}^T} \vec{x}[t]$
• now try: $\theta = \pi \rightarrow A = \begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix} \rightarrow$ not observable (recall)
• $A + \vec{l}\vec{c}^T = \begin{bmatrix} -1 + l_1 & 0\\ l_2 & -1 \end{bmatrix}$

→ eigenvalues (see the notes): $\lambda_1 = -1$, $\lambda_2 = l_1 - 1$

cannot be changed/stabilized using \vec{l}

Observability: The Continuous Case

- Observability for C.T. state-space systems
 - and implications for placing observer eigenvalues
- EXACTLY THE SAME CRITERIA

• Stability for C.T. means Re(eigenvalues) < 0

Observers: Accurate Positioning

- Physical motion is inherently marginally stable
 - due to the relationship between position, velocity and acceleration
 - $\dot{x} = v, \quad \dot{v} = a$
 - small error in a \rightarrow growing error in v
 - small error in $v \rightarrow growing error in x$
- You are in a car in a featureless desert
 - you know the position where you started
 - you record your acceleration (along x and y directions)
 - to estimate your current position
 - you integrate accel./velocity to predict your current position
 - > but inevitable small errors (eg, play in accelerator) make your predicted position more and more inaccurate (m. stability)
 - soon, your prediction becomes completely useless miles from where you really are
 - NOT A VERY PRACTICALLY USEFUL WAY TO LOCATE YOURSELF

Observers for Positioning (contd.)

• Enter GPS

* see the notes for the math

- you have a GPS receiver and position calculator
 - but GPS isn't perfectly accurate either (though much better than our integration technique, aka "dead reckoning")
 - can easily be a few 10s of feet off
- Can we combine dead reckoning and GPS
 - for better accuracy than GPS alone?
- YES: feed GPS position data into an observer!
 - stabilize the observer by choosing \vec{l} wisely
 - even with perpetual small GPS and acceleration errors
 - It the observer's estimate is far better than just the GPS alone!*
- This is what all serious navigational systems use
 - with an additional twist: \vec{l} keeps updating, becomes $\vec{l}[t]$
 - this is the famous KALMAN FILTER
 - ➔ used in all rockets, drones, autonomous cars, ships, ...

Rudolf Kálmán "inventor" of control theory: 1950s/60s

- state-space representations
- stability, controllability, observability and implications
- Kalman filter
 - initially received with "vast skepticism" not accepted for publication!
 - later adopted by the Apollo rocket program, the Space Shuttle, submarines, cruise missiles, UAVs/drones, autonomous vehicles, ...

Who Invented Eigendecomposition?

also coined the term "matrix"

Arthur Cayley (1821-95)

Cayley-Hamilton Theorem

Who Invented Matrices?

known and used in <u>China</u> - before 100BC (!)

- explained in Nine Chapters of the Mathematical Art (1000-100 BC)
 - used to solve simultaneous eqns; they knew about determinants
- 1545: brought from China to Italy (by Cardano)
- 1683: Seki ("Japan's Newton") used matrices
- developed in Europe by Gauss and many others
 - finally, into its modern form by Cayley (mid 1800s)

Charles Proteus Steinmetz inventor of the phasor

- "Complex Quantities and their Use in Electrical Engineering", July 1893
 - revolutionized AC circuit/transmission calculations

suffered from hereditary dwarfism, hunchback, and hip dysplasia