EE16B, **Spring 2018 UC Berkeley EECS** Maharbiz and Roychowdhury Lectures 8A, 8B & 9A: Overview Slides **Data Analysis** Singular Value Decomposition and **Principal Component Analysis**

The SVD (Singular Value Decomposition)

Singular Value Decomposition

- Looks like eigendecomposition, but is different
 - Any matrix A (no exceptions) can be decomposed as

Unitary Matrices: Orthonormality

Rank 1 Matrices and Outer Products

• Consider
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 3 & 3 & 3 & 3 & 3 \\ 2 & 2 & 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} + \text{row}$$

• rank-1 matrix can be written as $\vec{x}\vec{y}^T$: an outer product

nxm

1xm

outer product: product of col and row vectors

•
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} a & b & c & d & e \end{bmatrix} = \begin{bmatrix} xa & xb & xc & xd & xe \\ ya & yb & yc & yd & ye \\ za & zb & zc & zd & ze \end{bmatrix}$$

- rank-1: a very "simple" type of matrix
 - its "data" can be "compressed" very easily

nm numbers

→ can be written as outer product: $A = \vec{x}\vec{y}^T$

n+m << nm: data compression

EE16B, Spring 2018, Lectures on SVD and PCA (Roychowdhury)

rank=1

Matrix Multiplication using Outer Products

• Example:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x & y & z \\ p & q & r \end{bmatrix} = \begin{bmatrix} ax + bp & ay + bq & az + br \\ cx + dp & cy + dq & cz + dr \end{bmatrix}$$

$$\begin{bmatrix} a \\ c \end{bmatrix} \begin{bmatrix} x & y & z \end{bmatrix} = \begin{bmatrix} ax & ay & az \\ cx & cy & cz \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x & y & z \\ p & q & r \end{bmatrix} = \begin{bmatrix} bp & bq & br \\ dp & dq & dr \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x & y & z \\ p & q & r \end{bmatrix} = \begin{bmatrix} bp & bq & br \\ dp & dq & dr \end{bmatrix}$$

Using the SVD for Image Analysis and Compression

Example: B&W Polish Flag as a Matrix

Example: Polish Flag as a Matrix

• size: 281x450 (x 3 colours: R, G, B)

Example: SVD of the Austrian Flag

• size: 281x450 (x 3 colours: R, G, B)

Example: SVD of the Greek Flag

• size: 295x450 (x 3 colours: R, G, B)

Example: SVD of the US Flag

• size: 450x237 (x 3 colours: R, G, B)

Example: SVD of Michel Maharbiz

size: 1100x757 (grayscale)

 $\sigma_1 \vec{u}_1 \vec{v}_1^T$ 15kB $\sum_{i=1}^2 \sigma_i \vec{u}_i \vec{v}_i^T$ $\sum_{i=1}^5 \sigma_i \vec{u}_i \vec{v}_i^T$ $\sum_{i=1}^{10} \sigma_i \vec{u}_i \vec{v}_i^T$

 $\sum_{i=1}^{20} \sigma_i \vec{u}_i \vec{v}_i^T \quad \sum_{i=1}^{50} \sigma_i \vec{u}_i \vec{v}_i^T \quad \sum_{i=1}^{100} \sigma_i \vec{u}_i \vec{v}_i^T \quad \sum_{i=1}^{200} \sigma_i \vec{u}_i \vec{v}_i^T$

Features not always intuitive

Michel's Singular Values

How Michel's singular values drop off

Geometric View of Orthogonality

Projection onto Orthonormal Bases

Geometric View of Unitary Operations

Geometric View of Orthogonality

Projection onto Orthonormal Bases

Using the SVD for Data Analysis, Feature Extraction and Clustering

Matrices Representing Ratings

• Movies rated by Users (eg, Netflix, Amazon Video)

Movie → User Name	Full Metal Jacket	Die Hard	Yojimbo	2001: A Space Odyssey	The Quiet Earth	On The Beach	Would I Lie to You	Dr. Strangelove	Hokkabaz
↓ 									
A	5	5	4	5	5	5	1	2	1
В	1	1	1	3	4	3	5	5	5
С	2	1	1	5	5	4	2	1	1
D	5	5	5	5	5	5	5	5	5
E	1	2	1	2	1	2	2	2	1

Features of Rating Matrices

Movie → User Name ↓	Full Metal Jacket	Die Hard	Yojimbo	2001: A Space Odyssey	The Quiet Earth	On The Beach	Would I Lie to You	Dr. Strangelove	Hokkabaz
Α	5	5	4	5	5	5	1	2	1
В	1	1	1	3	4	3	5	5	5
С	2	1	1	5	5	4	2	1	1
D	5	5	5	5	5	5	5	5	5
E	1	2	1	2	1	2	2	2	1

"most typical" col (movie) feature: 65% like D's choices, 50% like A's, 40% like B's, 35% like C's

EE16B, Spring 2018, Lectures on SVD and PCA (Roychowdhu

"most typical" row (user) feature: likes SF more; action somewhat less; and comedy even less

Features of Rating Matrices (contd.)

Movie → User Name ↓	Full Metal Jacket	Die Hard	Yojimbo	2001: A Space Odyssey	The Quiet Earth	On The Beach	Would I Lie to You	Dr. Strangelove	Hokkabaz
А	5	5	4	5	5	5	1	2	1
В	1	1	1	3	4	3	5	5	5
С	2	1	1	5	5	4	2	1	1
D	5	5	5	5	5	5	5	5	5
E	1	2	1	2	1	2	2	2	1

2nd most typical col (movie) feature: 55% like A's choices, 70% unlike B's, 35% like C's, 15% unlike D's, negligibly like E's

5

 \vec{u}_2

N

ω

4

σ

user

 $\sigma_2 ec{u}_2 ec{v}_2^T$

feature 2

Projection in the Feature Basis

Movie → User Name ↓	Full Metal Jacket	Die Hard	Yojimbo	2001: A Space Odyssey	The Quiet Earth	On The Beach	Would I Lie to You	Dr. Strangelove	Hokkabaz
А	5	5	4	5	5	5	1	2	1
В	1	1	1	3	4	3	5	5	5
С	2	1	1	5	5	4	2	1	1
D	5	5	5	5	5	5	5	5	5
E	1	2	1	2	1	2	2	2	1

• Express each col of A (movie column) as a linear combination of col. features • e.g., Full Metal Jacket column: $\begin{bmatrix} 5\\1\\2\\5 \end{bmatrix} = \alpha_{11}\vec{u_1} + \alpha_{21}\vec{u_2} + \alpha_{31}\vec{u_3} + \dots + \alpha_{51}\vec{u_5}$

Clustering in Feature Bases

Principal Component Analysis (PCA)

Covariance Matrices

Covariance Matrices: Properties

•
$$S \triangleq \frac{1}{n} \tilde{A}^T \tilde{A}$$

- S is square and symmetric: $S = S^T$ or $s_{ij} = s_{ji}$
- The diagonal entries of S are real and ≥ 0

•
$$s_i^2 \triangleq s_{ii} = \frac{1}{n} \sum_{j=1}^n \tilde{a}_{ij}^2 \ge 0$$
 : variance of ith row of A

- can also show: $|s_{ij}| \leq s_i s_j$
 - using the Cauchy-Schwartz inequality

The Correlation Matrix

•
$$r_{ij} \triangleq \frac{s_{ij}}{s_i s_j}$$
; $r_{ij} = r_{ji}$ (symmetry); $\Rightarrow r_{ii} = 1$ why?
source $r_{ij} = r_{ij} = r_{ij}$ (symmetry); $\Rightarrow |r_{ij}| <= 1$

Correlation: Geometric Intuition

The Intuition behind PCA

- PCA: finds (orthogonal) "main axes along which the data lie": the principal components
 - provides weights indicating "strength" of each axis

starting point for PCA: the covariance matrix S

PCA: The Procedure

Eigendecompose the covariance matrix

- with $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \cdots \geq \lambda_m \geq 0$
- eigenvectors $\vec{p_i}$ = the **principal components**

Principal Components of the Data

PCA: Why it Works: The Flow

- First: establish some properties of P and Λ
 - properties of real symmetric matrices
 - real eigenvalues
 - real set of orthonormal eigenvectors
 - properties of real A^T A
 - → eigenvalues ≥ 0
- Express data in eigenvector basis
 - project each data point onto eigenvectors
- Show that the covariance matrix of the projected data is diagonal
 - the variances of the projections along each axis/PC
- First PC maximizes variance along any 1D projection
 - 2nd PC maximizes remaining variance; and so on

Properties of Covariance Matrices

- If S is a real m_xm symmetric matrix ($s_{ii} = s_{ii}$)
 - 1. its eigenvalues are all real
 - $S\vec{p} = \lambda\vec{p}$. S symmetric $\rightarrow \vec{p}^T S = \lambda \vec{p}^T \cdot \rightarrow \vec{p}^T S \overline{\vec{p}} = \lambda \vec{p}^T \overline{\vec{p}} = \lambda \|\vec{p}\|^2$
 - S real $\rightarrow S\overline{\vec{p}} = \overline{\lambda}\,\overline{\vec{p}} \cdot \rightarrow \vec{p}^T S\overline{\vec{p}} = \overline{\lambda}\vec{p}^T\overline{\vec{p}} = \overline{\lambda}||\vec{p}||^2$.
 - → hence $\lambda \|\vec{p}\|^2 = \overline{\lambda} \|\vec{p}\|^2 \to \lambda = \overline{\lambda} \to \lambda$ is real.
 - 2. A set of real eigenvectors can be found (see the notes)
 - 3. The eigenvectors form an orthonormal set (basis).
 (see the notes)
- If S is in the form A^TA (A real)
 - 4. its eigenvalues are all ≥ 0 .

$$A^T A \vec{p} = \lambda \vec{p} \longrightarrow \vec{p}^T A^T A \vec{p} = \lambda \vec{p}^T \vec{p} \longrightarrow (A \vec{p})^T A \vec{p} = \lambda \vec{p}^T \vec{p}$$

$$\rightarrow \rightarrow \|A\vec{p}\|^2 = \lambda \|\vec{p}\|^2 \rightarrow \lambda = \frac{\|A\vec{p}\|^2}{\|\vec{p}\|^2} \ge 0 .$$

PCA Basis Diagonalises the Data

- eigenvectors orthonormal $\rightarrow PP^T = I \rightarrow P^T = P^{-1}$
- eigendecomposition of S: $S = P \Lambda P^T$
- project rows of (zero-mean) A in basis P: $F = \tilde{A}P$
 - columns of F are the projections along $\vec{p_i}$
- Let G be the co-variance matrix of F: $G \triangleq (F^T F)/n$
 - $nG = F^T F = P^T \tilde{A}^T \tilde{A} P = nP^T SP = nP^T P \Lambda P^T P = n\Lambda$ = Λ (diagonal) \leftarrow Data projected on PC basis becomes UNCORRELATED
 - the diagonal entries are the variances of the data projected along $\vec{p_i}$ (recall: from defn. of covariance matrix)

Why do PCs Align with Visual Axes?

- So far: have shown that PCs are orthonormal
 - data projected onto them becomes uncorrelated
- but why is the first PC aligned with the direction of maximum spread?
- Key property of PCA ← proof → notes
 - consider **any** norm-1 vector ("direction") \vec{p}
 - project the data along it: $\tilde{A}\vec{p}$
 - find the variance of the projected data: $\frac{1}{n} (\tilde{A}\vec{p})^T (\tilde{A}\vec{p})$

• the first PC $\vec{p_1}$ maximizes this variance (the max is $\vec{\lambda_1}$)

→ 2nd PC: maximizes variance along directions orthogonal to $\vec{p_1}$ → 3rd PC: maximizes var. along dirs. orthogonal to $\vec{p_1}$ and $\vec{p_2}$; and so on EE16B, Spring 2018, Lectures on SVD and PCA (Roychowdhury) Slide 36

PCA: the Connection with the SVD

- Suppose you run an SVD on the data: $\tilde{A} = U \Sigma V^T$
 - the covariance matrix is:

$$\Rightarrow S \triangleq \frac{1}{n} \tilde{A}^T \tilde{A} = \frac{1}{n} V \Sigma^T U^T U \Sigma V^T = V \begin{bmatrix} \Sigma^T \Sigma \\ n \end{bmatrix} V^T \frac{1}{n} \begin{bmatrix} \sigma_1^2 \\ \sigma_2^2 \\ & \ddots \\ & \sigma_m^2 \end{bmatrix}$$

$$\Rightarrow \text{ recall PCA: } S = P \land P^T \leftarrow \text{IDENTICAL FORM} \bullet \text{ diagonal and } ≥ 0$$

- i.e., can use the SVD of à for PCA:
 - → just set $\lambda_i \triangleq \frac{\sigma_i^2}{n}$ and $P \triangleq V$ (no need to even form S)!

Computing SVDs via Eigendecomposition

- Prev. slide: SVD: $S = V \frac{\Sigma^T \Sigma}{n} V^T$; PCA: $S = P \Lambda P^T$
- Q: how to calculate an SVD of a matrix A?
 - using eigendecomposition
- A: just use the above insight (PCA/eigendecomposition)!
 - form $S \triangleq A^T A$, eigendecompose $S = P \Lambda P^T$

nxn

- set $\sigma_i \triangleq \sqrt{\lambda_i}$, $V \triangleq P$
- what about U?
 - -> just eigendecompose $\hat{S} \triangleq AA^T = Q\hat{\Lambda}Q^T$; then $U \triangleq Q$
 - can also get V from the same eigendecomposition
 - $A = U\Sigma V^T \rightarrow U^T A = \Sigma V^T \rightarrow A^T U = V\Sigma^T \rightarrow$
- set $\sigma_i \triangleq \sqrt{\lambda_i}$

if $\sigma_i = 0$, choose v_i arbitrarily to complete orthonormal basis for V

 $i = 1, \cdots, m$

 \vec{v}_i

more work, because (we had assumed) $n \ge m$

* why didn't we subtract means from A and normalize by n?

Who Invented the SVD?

• SVD: "Swiss Army Knife" of numerical analysis

Eugenio Beltrami 1835-1900 proposed the SVD via eigendecomposition of A^T A or A A^T

EE16B, Spring 2018, Lectures on SVD and PCA (Roychowdhury)

Camille Jordan 1838-1922

Gene Golub 1932-2007

Erhardt Schmidt James Joseph 1878-1959 Sylvester 1814-97 Hermann Weyl 1885-1955

Bill Kahan UCB EECS

Jim Demmel UCB EECS

Summary: SVD and PCA

- Singular Value Decomposition (SVD)
 - useful for "low-rank approximations" of matrices
 - image analysis and compression
 - general data analysis, finding important features, clustering
- Covariance, Correlation and PCA
 - visualizing data as scatter plots
 - covariance and correlation matrices of data
 - Principal Component Analysis
 - eigenvecs of covariance matrix: principal components
 - · directions along which data varies maximally
 - dropping later PCs can, eg, clean out (small) noise
 - eigenvalues correspond to variances along PCs
 - SVD can be used instead of eigendecomposition
 - eigendecomposition of covariance matrix: performs SVD