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EECS 16B Designing Information Devices and Systems II
Fall 2019 Notes: Vector Differential Equations

1 Matrix Form
1.1 Introduction
Last time we saw how to solve simple scalar first order linear differential equations. Now, we are going to
expand our tool set and learn how to tackle multivariable differential equations. (You will see in the home-
work that these exact same ideas will also equip us to deal with higher-order differential equations where we
have second and third derivatives involved.) Let’s motivate the need to understand two dimensional systems
with the following circuit.

−
+Vin

R1 I1

C1

R2 I2

C2

Figure 1: Two dimensional system

Let C1 =C2 = 1µF , R1 =
1
3 MΩ and R2 =

1
2 MΩ.1

Concept Check: Before we begin, how would you solve for the above system if R2 = 0?

Answer: If R2 = 0, then the C1 and C2 are connected in parallel and can be combined into a single effective
capacitance of C1 +C2. This is like what happened earlier when we had two gate capacitances in parallel.

As in Note 1, let us first consider the discharging case. In the above system, let Vin = 1V for time t < 0, and
Vin = 0V for time t ≥ 0. With this in mind, we have two steady state conditions:

(a) Initial condition t = 0 : The voltage has been charging the capacitors for an infinite amount of time.
Hence, both capacitors have voltage VC1 =VC2 = 1V and the current I1 = I2 = 0A.

(b) As t → ∞ : After the capacitors have been allowed to discharge for a long period of time, they carry
no charges on their plates, hence VC1 =VC2 = 0V .

Next, let us solve for the transients, i.e. how does our system go from (a) to (b)? First we need to set up the
circuit equations.

1The SI prefixes ‘M’ and ‘µ’ stand for mega and micro and correspond to the decimal multiples of 106 and 10−6 respectively.
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V2 =V1− I2R2 (1)

I2 =C2
d
dt

V2 (2)

0−V1 = I1R1⇒ I1 =−
V1

R1
(3)

I1 = I2 +C1
d
dt

V1 (4)

For equations (1) and (2), we look at the current through Node 2, using Ohm’s law for the former and
voltage-current relation for the capacitor in the latter. Similarly, we find equation (3) and (4) by looking at
Node 1. Similar to what we had seen in a single capacitor system, we have effectively introduced two new
variables - d

dt V1 and d
dt V2. Next, to solve for the transients, we need to first define our system variables. The

standard approach that we will always take is to make anything that gets differentiated into a state
variable. Hence, we will need two state variables, V1 and V2, the voltages across C1 and C2 respectively. We
will need to setup differential equations to solve for our system variables.

1.2 Systems of Differential Equations
We get a system of differential equations by isolating the derivative terms and solving for them in terms
of their non-differentiated selves. You can view this as doing the downward pass of Gaussian Elimination
using an ordering of the variables so that the d

dt · variables come second to last and their non-differentiated
counterparts come last. Because there will be more unknowns than equations, Gaussian elimination will
stop on the last d

dt -ed variable. Then, we can do a limited upward-pass (back-substitution pass) of Gaussian
elimination to purge any dependence of one d

dt -ed variable on any other d
dt -ed variable. This gives rise to

the system of differential equations in a systematic way — it is the lower block that remains after doing this
back-substitution. In principle, every other circuit quantity of interest can be found once we know how the
state variables and their derivatives behave.

d
dt

V1(t) =−
(

1
R1C1

+
1

R2C1

)
V1(t)+

V2(t)
R2C1

(5)

d
dt

V2(t) =
V1(t)
R2C2

− V2(t)
R2C2

(6)

To obtain equation (5), substitute for I1 and I2 from equations (2) and (4) into (3) and rearrange the terms.
Similarly, substitute for I2 (from equation (2)) into (1) to obtain (6).

The fact that every linear circuit involving capacitors (and as we will see inductors as well) can eventually
be expressed into this form is a close mathematical relative of the Norton/Thevenin equivalence that you
saw in 16A. Both are effectively just consequences of Gaussian Elimination.

Concept Check: Take a second to work out setting up the above differential equations. It is important to
try to reduce all your branch equations from the circuit analysis to as few variable as possible.

As seen in EE16A, when encountering a system of equations, we try to put it into vector/matrix form to try
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to solve it. So, let’s put equations (5) and (6) in the matrix differential form. We define~x(t) =

[
V1(t)
V2(t)

]
,

[
dV1
dt

dV2
dt

]
=

−( 1
R1C1

+ 1
R2C1

)
V1 +

V2
R2C1

V1
R2C2
− V2

R2C2

 (7)

=

−( 1
R1C1

+ 1
R2C1

)
1

R2C1
1

R2C2
− 1

R2C2

[V1(t)
V2(t)

]
(8)

d
dt
~x(t) =

[
−5 2
2 −2

]
~x(t) (9)

In equation (9), we have substituted in for the component values defined above so that we get a matrix with
concrete numbers in it.

Quick Aside: You may come across a dot over the variable of interest (e.g. V̇1) as short hand to represent
the d

dt operator. This is alternatively known as Newton’s notation and is sometimes used for conciseness,
especially in fields influenced by Physics notation. Similarly, we sometimes define V̈ ≡ d2

dt2 V to make it
faster to write second derivatives. However, we won’t be using Newton’s notation in this course.

In general, we want to set up our systems in the follwing generic form:

d
dt
~x(t) = A~x(t)+~b (10)

So, why do we choose this form? Because it most closely resembles the first order scalar differential equation
we studied in the previous note, and our goal in this note is to massage this equation to convert it to a

collection of first order differential equations. In context of our above example, A =

[
−5 2
2 −2

]
and~b =~0

because there is no external voltage or current being applied for t ≥ 0 in the above example.

2 Diagonalization by means of an eigenbasis

2.1 Eigenvalues and Eigenvectors
Before we delve into solving our system of differential equations, let’s review a core concept from EECS16A
- eigenvalues and eigenvectors. Please note this will be an abridged version of the content covered in
EECS16A. If you have further questions regarding any of these concepts, please review the notes from
EECS16A.

What are eigenvalues and eigenvectors. When a matrix acts on an eigenvector we get the same eigenvector,
except scaled by the relevant eigenvalue, i.e.

A~vλ = λ~vλ (11)

Here, ~vλ 6=~0 is an eigenvector of A which corresponds to the scalar λ eigenvalue. If we look at all the
eigenvectors of the matrix A corresponding to a single λ , these together form a subspace known as the
λ -eigenspace. Each distinct eigenvalue is associated with its own nontrivial eigenspace2.

2In 16A, you also saw some interesting properties of these eigenspaces. For example, any collection of nonzero vectors drawn
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We can see this subspace property by rearranging the above equation into:

(A−λ In)~v =~0. (12)

Here, In is the n× n identity matrix. Since A~vλ = λ~vλ , we know that the matrix A−λ In has a nullspace
(namely the eigenspace corresponding to the eigenvalue λ of A). Consequently, this matrix (A−λ In must
be non-invertible and thus det(A−λ In) = 0. Remember, the determinant of a square matrix measures the
oriented volume3 of the unit hypercube as transformed by that matrix. Non-invertible matrices destroy
information by squashing the space along at least one direction (the nullspace directions), and so result in
something with volume zero.

This gives us the characteristic equation and solving this equation will give us the eigenvalues λ . As a

working example, let’s compute the eigenvalues of A =

[
1 2
4 3

]
:

det(A−λ I2) = det

[1 2
4 3

]
−

[
λ 0
0 λ

]= det(

[
1−λ 2

4 3−λ

]
) (13)

Taking the determinant and setting it to zero, we get the characteristic equation:

0 = (1−λ )(3−λ )− (4)(2) = λ
2−4λ −5 = (λ −5)(λ +1) (14)

Setting equation (14) to 0 and solving the quadratic equation, we get the eigenvalues as λ1 = 5 and λ2 =−1.
Each eigenvalue will have it’s own eigenspace, and it will define the nullspace of the matrix A−λ In. Hence
to find the eigenspace, we can just find the relevant nullspace4

(A−λ1I2)~v1 = (A−5In)~v1 =

[
−4 2
4 −2

][
v11
v12

]
=~0 (15)

We see that both rows provide redundant information - 4v11−2v12 = 0, and hence an eigenvector is ~v1 =

[
1
2

]
.

Concept Check: Find an eigenvector~v2 correspoding to λ2.

Answer: A second eigenvector is~v2 = α

[
1
−1

]
. Note that any α 6= 0 would still be a valid eigenvector.

from eigenspaces corresponding to distinct eigenvalues is linearly independent. This is proved by contradiction — it is easy to see
for two distinct eigenvalues. (A vector can’t simultaneously be two different multiples of the same thing!) From there, the proof
continues to three vectors. If one is expressible as a combination of the others, then those two must be expressible as a multiple of
each other, which we have already ruled out. And so on. If you don’t remember this proof, it is worth doing for yourself. Anyway,
as a result, there cannot be more than n distinct eigenvalues for an n× n matrix since each one must be associated with its own
eigenspace, and there can only be n linearly independent directions in n-dimensional space.

3Recall how the determinant is computed by doing Gaussian elimination. Multiplication of a row by −1 incurs a factor of −1
because it is like looking through a mirror — a mirror flips orientation. Every time we swap two rows, we also incur a factor of −1
— this is because swapping two rows is like rotating and then looking through a mirror. Rotating doesn’t change volume, but the
mirror flips the orientation. Adding a multiple of one row to another does nothing to the oriented volume because it is like shearing a
cube — just as pushing over a deck of cards doesn’t change the volume of the deck, shearing doesn’t change volume either. Scaling
a row by a positive number has that scaling effect on the volume — and so by reversing the scalings done in Gaussian Elimination
(which gets us to the Identity), we can get the volume effect of the original matrix.

4You know from EECS 16A how you can find nullspaces systematically using Gaussian Elimination. Simply run Gaussian
elimination until it terminates — you will have at least one row of zeros. Then work your way backward from the end finding free
variables (variables that you did not “pivot” on — i.e. variables that you never explicitly tried to eliminate from lower equations —
these are variables that got eliminated on their own!) and then expressing others in terms of them. This will give you a basis for the
nullspace.
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2.2 Repeated and Complex Eigenvalues
2.2.1 Repeated Eigenvalues

For a 2×2 matrix, it’s possible that the two eigenvalues that you end up with have the same value, leading
to a phenomenon called a repeated eigenvalues. This repeated eigenvalue can have one or two dimensional
eigenspace (unlike a single, unrepeated eigenvalue, which will only have a one dimensional eigenspace).

For example, the following matrix has a repeated eigenvalue of λ .

A =

[
λ 0
0 λ

]

The λ -eigenspace of this matrix is all of R2 since for any vector~v ∈ R2, A~v = λ~v.

We can also have examples like

A =

[
0 1
0 0

]
that have a single eigenvalue λ = 0. (Easy to see by looking at the characteristic equation λ 2 = 0.) In this

case, the relevant eigenspace is one-dimensional — only

[
1
0

]
and its multiples are eigenvectors here. (If

there were any other linearly independent eigenvectors corresponding to the 0 eigenvalue, then everything
would have to be an eigenvector and that would mean the matrix mapped everything to the zero vector. But
the matrix is clearly not the zero matrix, so that isn’t what is going on.)

2.2.2 Complex Eigenvalues

It can also be the case that when we solve det(A−λ In) = 0, there will be no real solutions to λ . Consider
the rotation matrix we encountered in Note j:

Rθ =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(16)

Concept Check: When does Rθ have real eigenvalues? Why? Answer: For θ = 0◦ or θ = 180◦.

However, when θ does not correspond to 0◦ or 180◦ rotation, there are no real vectors that are scaled versions
of themselves after the transformation. This results in complex eigenvalues. For example, let’s look at 45◦

rotation:

R =
1√
2

[
1 −1
1 1

]

det(R−λ I) =
1
2
(1−λ )(1−λ )+

1
2

Setting this determinant equal to zero and solving yields the complex eigenvalues, λ = 1√
2
(1+ j) and λ =

1√
2
(1− j), which makes sense because there are no physical (real) eigenvectors for a rotation transformation

in two dimensions.
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2.3 Change of Basis and Diagonalization
Let’s start with a vector ~v ∈ Rn. This vector represents a point in space. When you think about this vector
written out using the coordinates, you are scaling the vectors in the standard basis (i.e. the columns of
the identity matrix, In) by the components of ~v and then adding them up. But, suppose that I think about
this vector in terms of a different set of directions. More concretely, I define a new coordinate system.
The vectors that define this coordinate system form a basis, i.e. n linearly independent vectors~b1,~b2, . . .~bn

defined with respect to the standard basis. Now, let’s say I have a vector~u which I am representing as


u1
u2
...

un


measuring with respect to my coordinate system. How can I translate this to the coordinates you are familiar
with? Well, instead of scaling the vectors of the standard basis, we could scale the vectors defining my new
basis. Suppose that both of us were thinking of the same physical point in space and hence the vector ~v in
your basis is:

~v = u1~b1 +u2~b2 + · · ·+un~bn (17)

=

 | | |
~b1 ~b2 · · · ~bn

| | |




u1
u2
...

un

 (18)

= B~u (19)

Hence, to tranform a vector from my basis to your standard basis involves just a matrix multiplication. This
can be expressed in a diagram given in Figure 2 using the up and down arrows.

~x
A

- ~y

~̃x

B−1

?

B

6

D
- ~̃y

B

6

B−1

?

Figure 2: Change of Basis Mapping. The top row has everything in the standard basis. The bottom row is in B-basis.
The matrix D is supposed to represent the same linear transformation as A, except that it does so for vectors expressed
in B-basis. It turns out D = B−1AB since vectors are columns. We use tilde-ed coordinates for things in the lower
basis.

Next, let’s see what happens if we have a matrix A that transforms vectors. Consider the 2× 2 matrix

example, A =

[
1 2
4 3

]
. We can imagine this matrix is performing a linear tranformation, ~y = A~x. The

question is whether there is another basis within which this transformation is much simpler to understand.

What can we wish for? The transformation is clearly doing something nontrivial, and so it is not possible
to find a basis in which the transformation is just the identity matrix. Nor is one going to be found where
the matrix is just the zero matrix. So not all wishes can be fulfilled. What about wishing for a diagonal

© UCB EECS 16B, Fall 2019. All Rights Reserved. This may not be publicly shared without explicit permission. 6
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transformation? That would certainly be simpler to understand. But is that a reasonable wish? Let’s see
whether it is in this case.

Let’s suppose we had our new basis B so that~x = B~̃x and correspondingly,~̃x = B−1~x. Similarly,~y = B~̃y and
correspondingly,~̃y = B−1~y. Then:

A~x = AB~̃x = A(x̃[1]~b1 + x̃[2]~b2) (20)

= x̃[1]A~b1 + x̃[2]A~b2 (21)

Now, if chose our new basis to be the ones defined by the eigenvectors of A, then we can simplify:

= x̃[1]λ1~b1 + x̃[2]λ2~b2 (22)

=

 | |
~b1 ~b2
| |

[λ1 0
0 λ2

][
x̃[1]
x̃[2]

]
(23)

= BD~̃x (24)

= BDB−1~x, (25)

where D is the diagonal matrix of eigenvalues and B is a matrix with the corresponding eigenvectors as its
columns. Thus we have proved that A = BDB−1. Furthermore, this also means that D = B−1AB.

So, our wish can indeed be fulfilled — at least for this specific matrix. In general, the pattern we have
used above will hold whenever we can find an eigenbasis — a full basis consisting of eigenvectors. Why?
Because AB= [A~b1,A~b2, · · · ,A~bn] = [λ1~b1,λ2~b2, · · · ,λn~bn] and then since B−1B= In, we know that B−1AB=

[λ1B−1~b1,λ2B−1~b2, · · · ,λnB−1~bn] =


λ1 0 · · · 0
0 λ1 · · · 0
...

. . .
. . .

...
0 · · · 0 λn

= D.

But we know that there also exist matrices for which an eigenbasis does not exist. For those, this trick won’t
work.

3 How to Solve?
Now that we understand how to convert our systems of differential equations into vector/matrix form, let’s
understand how to solve them. The first thing we should try to do is to use the tools we developed for
the scalar case. But, how can we do this, when our equations seem to be fundamentally dependent on two
independent variables? Clearly, we wouldn’t have this problem of ‘coupling’ if our A matrix were diagonal.
So, let’s try to change our basis to one where the A matrix does become diagonal.

Note that if our system of differential equations were ‘uncoupled’ to begin with, our A matrix would have
been diagonal. Hence, we could proceed to solve the first order differential equations independently of each
other, as seen in Note 1. Consider the following circuit:
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−
+Vin

R2I2

C2

R1 I1

C1

Figure 3: Diagonal System

Both the capacitors have been charged to Vin and at t = 0, we set Vin = 0V , and allow the capacitors to
discharge. Hence our initial conditions are V1(0) =V2(0) =Vin. We get the following branch equations:

I1 =−C1
d
dt

V1 =
V1

R1
(26)

I2 =−C2
d
dt

V2 =
V2

R2
(27)

Hence from equations (26) and (27), we get the following uncoupled differential equation:

d
dt

[
V1(t)
V2(t)

]
=

[
− 1

R1C1
0

0 − 1
R2C2

][
V1(t)
V2(t)

]
(28)

Concept Check: We can easily solve the above system of equations by separately solving for V1 and V2.
Review Note 1 if you are unsure about how to solve for the voltages.

Coming back to our original system, we define~x(t) =

[
V1(t)
V2(t)

]
. Then, in equation (9), we set up the differ-

ential equations as follows:

d
dt
~x(t) =

[
−5 2
2 −2

]
~x(t) (29)

As discussed, let’s begin by finding a coordinate system in which the transformation represented by this
matrix is simply diagonal.

First, we must find it’s eigenvalues, i.e. the roots of its characteristic equation:

det(λ I−A) = det

[λ +5 −2
−2 λ +2

] (30)

= (λ +5)(λ +2)−4 (31)

= λ
2 +7λ +6 = (λ +6)(λ +1) (32)

Solving the above characteristic equation, we get the eigenvalues as λ1 = −6 and λ2 = −1 and hence we

can find a set of eigenvectors as~v1 =

[
− 2√

5
1√
5

]
and~v2 =

[
1√
5

2√
5

]
. Defining the new basis as V = [~v1,~v2], we get

the diagonal matrix Λ =

[
−6 0
0 −1

]
.
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Hence, we can write A =V ΛV−1 and rewrite equation (9) as follows:

d
dt
~x(t) =V ΛV−1~x(t) (33)

=

[
− 2√

5
1√
5

1√
5

2√
5

][
−6 0
0 −1

][
− 2√

5
1√
5

1√
5

2√
5

]−1

~x(t) (34)

Let’s perform a change of basis by setting ~̃x(t) =

[
x̃[1](t)
x̃[2](t)

]
= V−1~x(t). By left multiplying V−1 on both

sides of equation (33), we get the following:

V−1 d
dt
~x(t) =V−1A~x(t) (35)

=⇒ d
dt

V−1~x(t) = Λ~̃x(t) (36)

=⇒ d
dt
~̃x =

[
−6 0
0 −1

]
~̃x(t) (37)

Because differentiation is linear, we can go from (35) to (36). In equation (37), we have successfully
uncoupled our equations and we can proceed to solve them independenly as mentioned earlier:

d
dt

x̃[1](t) =−6x̃[1](t) (38)

⇒x̃[1] = k1e−6t (39)
d
dt

x̃[2](t) =−x̃[2](t) (40)

⇒x̃[2] = k2e−t (41)

Next, we need to solve for our constants k1 and k2. Recall our initial conditions, V1(0) =V2(0) = 1V . Hence,
x̃[1](0) and x̃[2](0) are given by:

~̃x(0) =V−1

[
V1(0)
V2(0)

]
(42)

⇒

[
x̃[1](0)
x̃[2](0)

]
=

[
− 2√

5
1√
5

1√
5

2√
5

][
1
1

]
(43)

=

[
− 1√

5
3√
5

]
(44)

Hence, k1 =− 1√
5

and k2 =
3√
5
. Now, we can transform back into our original basis as follows to find V1(t)

and V2(t):

~x =V~̃x (45)

=

[
− 2√

5
1√
5

1√
5

2√
5

][
− 1√

5
e−6t

3√
5
e−t

]
(46)

=

[
2
5 e−6t + 3

5 e−t

−1
5 e−6t + 6

5 e−t

]
(47)
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For t ≥ 0, we find that V1 =
2
5 e−6t + 3

5 e−t and V2 =−1
5 e−6t + 6

5 e−t . Figure 4 is a plot of our solutions:

Figure 4: Initial Conditions: V1(0) = 1V and V2(0) = 1V

Using the same argument, we can see how the voltage will vary with different initial conditions (as shown
in figure 5):

(a) Initial Conditions: V1(0) = 0V and V2(0) = 1V (b) Initial Conditions: V1(0) = 1V and V2(0) = 0V

Figure 5: Voltage transients for different initial conditions on the capacitors

Concept Check: Take a minute to qualitatively reason about the initial increase in voltages in Figure 5

Now that we have a good understanding of the homogenous case, let’s look at the voltage transients of
charging our two capacitor system. In this case, we have two uncharged capacitors, i.e. V1(0) =V2(0) = 0V ,
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and we apply a voltage Vin = 1V for time t > 0. We get the following branch equations:

V2 =V1− I2R2 (48)

I2 =C2
d
dt

V2 (49)

Vin−V1 = I1R1⇒ I1 =
Vin−V1

R1
(50)

I1 = I2 +C1
d
dt

V1 (51)

Hence, our matrix differential equation is:

d
dt
~x(t) =

d
dt

[
V1
V2

]
=

−( 1
R1C1

+ 1
R2C1

)
1

R2C1
1

R2C2
− 1

R2C2

[V1
V2

]
+

[
Vin

R1C1

0

]
(52)

=

[
−5 2
2 −2

][
V1
V2

]
+

[
3
0

]
= A~x+~b. (53)

If A is invertible, we can make the following substitution: A~c+~b⇔ A~̂x. Differentiating both sides:

A
d
dt
~x+

d
dt
~b = A

d
dt
~̂x (54)

⇒ d
dt
~̂x =

d
dt
~x (55)

With the above substitutions, we can solve our non-homogenous equation:

d
dt
~̂x = A~̂x (56)

But we have already found the solutions for the above system as ~̂V1 = k̂1e−6t and ~̂V2 = k̂2e−t . To solve for
k̂1 and k̂2, we need plug in the intial conditions for V̂1(0) and V̂2(0). Recall that our inital conditions for the
voltages were V1(0) =V2(0) = 0V . Based on our substitution, we have:

~̂V = Â−1(Â~V +~b) (57)

=

[
−5 2
2 −2

]−1[
3
0

]
(58)

=
1

(−5)(−2)− (2)(2)

[
−2 −2
−2 −5

][
3
0

]
=

[
−1
−1

]
(59)

Hence, k̂1 =−1 and k̂2 =−1. Next, we can find ~V by reversing our previous substitution:

~V = Â−1(Â~̂V −~b) (60)

= ~̂V − Â−1~b (61)

=

[
−e−6t

−e−t

]
− 1

6

[
−2 −2
−2 −5

][
3
0

]
(62)

=

[
−e−6t +1
−e−t +1

]
(63)
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Finally, we have V1(t) = 1− e−6t and V2(t) = 1− e−t . Figure 6 is a plot of our solutions.

Figure 6: Voltage transients for charging capacitors

Earlier, we made a critical assumption that A is invertible. If it is not invertible, we have two cases:

(a) There are no solutions. This is an interesting case where our circuit will never reach a steady state
solution. As an example, we can imagine charging a capacitor with an ideal current source. The
capacitor’s voltage will continue to increase at a constant rate, will never reach a steady state value.

(b) There are an infinite number of solutions. As a simple example, we can imagine just a capacitor
floating in the distance - one terminal connected to ground, but other terminal not connected to our
circuit. Since the voltage across this capacitor is independent of what happens in the circuit, we can
set it’s value to anything we want. Hence, we will have infinite solutions.

4 Inductors
Let’s introduce a new passive component, an inductor. This new component will help us design more
interesting circuits and introduce oscillations within our circuits.

4.1 Basics
IL(t)

L

+

−

VL(t)

Figure 7: Example Inductor Circuit
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The voltage across the inductor is related to its current as follows:

VL(t) = L
dIL(t)

dt
. (64)

where L is the inductance of the inductor. The SI unit of inductance is Henry (H). Looking at equation (64)
we can observe that an inductor behaves as a capacitor with the roles of current and voltage reversed.

Concept Check: The current across the inductor cannot change instantaneously. Why?
Solution: If our current changes instantaneously, then d

dt IL→∞, and from equation (64) the voltage across
the inductor VL→ ∞, which is not possible. Hence, our current cannot change instantaneously

In steady state, when the current flowing through an inductor is constant, there is no voltage drop across the
inductor. This makes sense, since an inductor is essentially a spool of wire wrapped around a conductor.
Similarly, if the current through the inductor is changing, there will be a voltage drop across the inductor.
The energy stored in the inductor turns out to be EL = 1

2 LI2, but we won’t be using this very much in
EECS16B. We are only mentioning it here because it helps us interpret what is happening later.

4.2 Physics behind Inductors (not in scope for EECS 16B, just for infor-
mation)

Inductors store energy in a magnetic field. In the same way that a capacitor separates charge (Q) and
this leads to an electric field (~E), anytime current flows down a conductor, it creates a magnetic field (~B).
Likewise, the magnetic field can store energy. Their behavior can be described using Faraday’s Law of
Induction.

The magnitude of magnetic field created by a straight wire is pretty small, so we usually use other geometries
if we are trying to create a useful inductance on purpose. A solenoid is a good example, where we wind a
wire usually around a conductor:

Figure 8: The Inductance of a Solenoid: a wire coiled around something

Note that the inductance (L) depends on geometry and a material property called magnetic permeability
(µ) of the solenoid core material. In the case of the solenoid in 8, the inductance depends on the number
of turns (N), the length of the solenoid (l) and the area (A) of the loops. Inductors are useful in many
applications such as wireless communications, chargers, DC-DC converters, key card locks, transformers in
the power grid, etc. But in many high speed applications, their presence might be undesirable as they create
delays in the time response of the circuit.

4.3 Equivalence Relations
Now that we have the basics, let’s derive the equivalence relations for series and parallel combinations of
inductors. We will find that these are similar to those of resistors. Why? Because the law governing an
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inductor VL = L d
dt IL involves a proportionality constant L that multiplies a current-like quantity to give a

voltage. In a resistor, the resistance R multiplies current to give a voltage.

4.3.1 Series Equivalence

Itest(t)

L1

+

−

VL1(t)

L2

+

−

VL2(t)

Itest

Figure 9: Series Inductor Circuit

Let’s apply a dItest
dt through the two inductors, then

VL1(t)+VL2(t) =VL

where, VL is the voltage across the two inductors. From VI relationship for inductors, we get

L1
dItest

dt
+L2

dItest

dt
=VL

(L1 +L2)
dItest

dt
=VL

Leq
dItest

dt
=VL

where, Leq = L1 +L2.
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4.3.2 Parallel Equivalence

IL(t)

IL1(t)

L1

+

−

VL1(t)

IL2(t)

L2

+

−

VL2(t)−
+Vtest

Figure 10: Parallel Inductor Circuit

We apply at Vtest across the parallel combination. We have

VL1 =VL2 =Vtest

L1
dIL1

dt
= L2

dIL2

dt
= Leq

dIL

dt
and from KCL, we have

IL(t) = IL1(t)+ IL2(t)

Differentiating with respect to time, and substituting from above equality,

dIL

dt
=

dIL1

dt
+

dIL2

dt

dIL

dt
=

Leq

L1

dIL

dt
+

Leq

L2

dIL

dt
1

Leq
=

1
L1

+
1
L2

.

5 LC Tank
In our two capacitor circuit example, we found that our eigenvalues were real. But, we could also encounter
a system whose eigenvalues are complex. In this section, we will explore a circuit, commonly known as an
LC tank, whose matrix will have purely imaginary eigenvalues.

In the following circuit, we have an inductor L= 10nH and capacitor C = 10pF in parallel. Let IL(0) = 50mA
and Vout(0) = 0V :

L

iL

C

+

−
Vout

ic
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Since the inductor and capacitor are in parallel:

VL =Vc =Vout (65)

KCL gives:

iL =−ic =−C
dVout

dt
(66)

dVout

dt
=− 1

C
iL (67)

VL =Vout = L
diL
dt

(68)

diL
dt

=
1
L

Vout (69)

Putting it into matrix form, as before: [
d
dt Vout

d
dt iL

]
=

[
0 − 1

C
1
L 0

][
Vout

iL

]
(70)

Finding the eigenvalues:

det

[−λ − 1
C

1
L −λ

]= λ
2 +

1
LC

= 0 (71)

∴ λ1,2 = 0± j
1√
LC

(72)

Next, we can find the eigenvectors of the above matrix as v1 =

 j
√

L
C

1

 and v2 =

− j
√

L
C

1

. We can use

these vectors to transform our coordinates to one where the matrix becomes diagonal. More concretely,

[
Vout

ßL

]
=

 | |
v1 v1
| |

[Ṽout

ĩL

]
(73)

As discussed before, once in this new coordinates, our system becomes uncoupled, and we can solve for
Vout and iL as follows: [

d
dt Ṽout

d
dt ĩL

]
=

[
j 1√

LC
0

0 − j 1√
LC

][
Ṽout

ĩL

]
(74)

⇒ d
dt

Ṽout = j
1√
LC

Ṽout (75)

d
dt

ĩL =− j
1√
LC

ĩL (76)

∴Ṽout = k̃1e
j√
LC

t (77)

ĩL = k̃2e−
j√
LC

t (78)
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Next, we need to find initial conditions in this new coordinate system. Substituting the given values,[
Ṽout(0)
ĩL(0)

]
=

 j
√

L
C − j

√
L
C

1 1

−1[
Vout(0)
ßL(0)

]
(79)

=
1

j20
√

10

[
1 j10

√
10

−1 j10
√

10

][
0

0.05

]
(80)

=

[
2.5×102

2.5×102

]
(81)

Hence, k̃1 = 2.5×10−2 and k̃2 = 2.5×10−2. Next, we can tranform back to our original coordinate system:[
Vout

iL

]
=

[
j10
√

10 − j10
√

10
1 1

][
2.5×10−2e j

√
10×109t

2.5×10−2e− j
√

10×109t

]
(82)

=

[
j0.25

√
10e j

√
10×109t − j0.25

√
10e− j

√
10×109t

2.5×10−2e j
√

10×109t +2.5×10−2e− j
√

10×109t

]
(83)

Concept Check: Write the above sum of exponentials as sine and cosine. Hint: Use the Euler form of sin
and cosine we encountered in the complex number note.

Based on the intuition we have gained above, let’s guess a solution with pure sines and cosines, as follows,

Vout(t) = c1 cos
(

1√
LC

t
)
+ c2 sin

(
1√
LC

t
)

(84)

Next, plugging in initial conditions to solve for the constants:

Vout(0) = 0 = c1

ic(0) =−iL(0) =−50×10−3

dVout(0)
dt

=
1
C

ic(0) =
−50×10−3

10−11 =
c2√

10−8×10−11

c1 = 0

c2 =−
5√
10

=−0.5
√

10

Vout(t) =−0.5
√

10sin
(√

10×109t
)

Notice that the amplitude of Vout is constant.

Concept Check: Follow the same steps above to find the current, iL(t). Hint: The current will also be of
the form in equation (84), but with different constants.

Solution:

iL(t) = 50×10−3 cos
(√

10×109t
)

(85)
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Figure 11: Voltage and Current response of LC Tank

Figure 11 plots the above solutions for the capacitor voltage and inductor current. This system is also called
an oscillator because the circuit produces a repetitive voltage waveform under the right initial conditions.

From the above plots, we can see that the current and voltage are 90◦ out of phase, i.e. when the current is at
its maximum or minimum, the voltage is at 0V , and vice versa. What does this mean for the energy stored
in these compoenets? We know that, energy in the capacitor, EC = 1

2CV 2 = 1.25×10−11 sin2
(√

10×109t
)

and energy in the inductor, EL = 1.25×10−11 cos2
(√

10×109t
)

. Figure ?? plots the these energies. As it
is clear, the total energy seems to be sloshing back and forth between the inductor and capacitor.
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Figure 12: Energy stored in Inductor and Capacitor. Notice the sum is constant.

6 RLC Circuits and Higher Order Differential Equations
The LC tank we studied in the previous section was a very ideal case where we assumed there was no resistor
in the system. But this is rarely the case, and we will need to understand how adding this third component
will modify our differential equations.

To motivate our discussions, consider the following circuit, with component values Vs = 4V, C = 2fF, R =
60kΩ, and L = 1µH.. Before t = 0, switch S1 is on while S2 is off. At t = 0, both switches flip state (S1
turns off and S2 turns on):

−
+ Vs

t = 0

S1

t = 0S2

C

+ −
VC

i R

+ −
VR

L

+ −VL

This is something that you will work out for yourself in the homework. The key is simply to follow the
program of marking as state variables anything that has a derivative on it.
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