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EECS 16B Designing [nformation Devices and Systems [1
Fall 2019 Note: Phasors

1 Overview
Frequency analysis focuses on analyzing the steady-state behavior of circuits with sinusoidal voltage and
current sources — sometimes called AC circuit analysis. This note will show you how to do this more easily.

A natural question to ask is: what’s so special about sinusoids? One aspect is that sinusoidal sources are very
common - for instance, in the voltage output by a dynamo - making this form of analysis very useful. The
most important reason, however, is that analyzing sinusoidal functions is easy! Whereas analyzing arbitrary
input signals (like in transient analysis) requires us to solve a set of differential equations, it turns out that
we can use a procedure very similar to the seven-step procedure from EE16A in order to solve AC circuits
with only sinusoidal sources.

2 Scalar Linear First-Order Differential Equations

We’ve already seen that general linear circuits with sources, resistors, capacitors, and inductors can be
thought of as a system of linear, first-order, differential equations with sinusoidal input. By developing
techniques to determine the steady state of such systems in general, we can hope to apply them to the
special case of circuit analysis.

First, let’s look at the scalar case, for simplicity. Consider the differential equation

d
$x(t) = Ax(t) +u(r),

where the input u(7) is of the form
u(r) = ke"
where s # A.

We’ve previously seen how to solve this equation, and saw that

_ k At kg
x(t)—(xo T )e +s—7te7

where x(0) = x is a parameter depending on the initial value of x(7).

The interesting thing about this solution is that it’s almost a scalar multiple of u(r) - if we ignore the initial
term involving e?, then x(¢) linearly depends on u(t). It’d be nice if we could somehow ignore that initial
term, by arguing that it goes to zero over time. Then, our “steady state” solution for x(¢) would involve only
the ¢* term, which seems to make our lives t lot easier.

When might that happen? Specifically, when does e’ — 0 as r — o0? If A were real, the answer is obvious
- the term decays to zero if and only if A < 0.

But what about for complex A? We can try writing a complex A in the form A = A, + jA;, to try and reduce
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the problem to the real case. Then, we see that
e)Lt _ e(/l,+j)L,-)t

— el’teﬂ"t.

The e™' is nice, since it’s exactly the real case we just saw above. But what to do with the e/t term? Well,
the only thing we can really do here is apply Euler’s formula, so we find that

M = M (cos(Nit) + jsin(At)).

This expression seems promising! The first term in the product is a real exponential, which we know decays
to zero exactly when Re[A] = A, < 0. The second term is a sum of two sinusoids with unit amplitudes. Since
the amplitude of each sinusoid is constant, their sum will clearly not decay to zero or grow to infinity over
time. Thus, the asymptotic behavior of the overall expression is governed solely by the first term - ¢* will
decay to zero exactly when ¢ does. Thus, applying our result from the real case, we see that e* goes to
zero exactly when A, < 0.

Looking back at our solution for x(), we’ve now got a condition for when the e* decays that works for both
real and complex A.

J Systems of Linear First-Order Differential Equations

Can we apply similar techniques to what we’ve just seen to a system of differential equations? Specifically,
consider the system

50) =A%) + i00),

dr
where A is a fixed, real, matrix. As before, we will consider only control inputs of a special form, where
each component is of the form ke* for some constant k. More precisely, we will consider only inputs where
ii() can be expressed in the form

—

i(t) = ue”,
where u does not depend on ¢, and s is not an eigenvalue of the matrix A.

Inspired by our observations in the previous section, let’s make the guess that our solution x(z) can be written
as

X(1) = xe"

where X does not depend on ¢. Substituting into our differential equation, we find that

d = st = =2

—(xe*") = Axe" + ue”

dt( ) +
= s(xe™) = Axe” + ue”

= st

—  (sI—A)xe" = ne”.
Since the above equality must hold true for all ¢, it is clear that we can equate the coefficients of ¢, to obtain
(sI—A)X = i.

Now, recall that s was assumed not to be an eigenvalue of A. Imagine that s/ — A had a nonempty null space
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containing some vector y. Then, by definition,

so s would be an eigenvalue of A with corresponding eigenvector y. Since we know that this cannot be the
case, our initial assumption was flawed, so s/ — A must have an empty null space and so must be invertible.

Thus, we can rearrange our equation for X above, to express
X=(sI—A)""u
It is straightforward to substitute this back into the expression for x(7) and verify that it does indeed corre-

spond to a valid solution for our original system of differential equations.

This is great! Starting with a system of differential equations with input of a particular form, we can now
use the above identity to construct a solution for X(¢) without calculus!

But is this solution the one we will reach in the steady state? Assume, for simplicity, that A has a full set of

eigenvectors V1, ..., V, with corresponding eigenvalues A1,...,A,. Then we know that we can diagonalize A
to be
A 0 - 0 .
| 0 A of|! |
A= |V Vn . . V] Vu
| AR N |
0 0 - A,
=VAV !,

where V and A are the eigenvector and eigenvalue matrices in the above diagonalization.

Thus, we can rewrite our differential equation for x(z) as

%)—5(;) — VAVIE(0) + ()
. %(qu@) = AV 1X1) + V).

As we have seen many times, this diagonalized system of differential equations can be rewritten as a set of
scalar differential equations of the form

dr
where the [i] represents the ith component of the associated vector, and 4, is the ith eigenvalue of A.

Since (V~'ii(t))[i] is a multiple of ¢ and s # A;, we know from our scalar results that the solution to
(V=1%(r)))[i] can be expressed as a linear combination of ¢** and e*, where the ** decays to zero over time
if and only if Re[A;] < 0, yielding a steady state solution involving only a scalar multiple of ¢*. Let this
solution be
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Thus, we can stack these solutions for i and pre-multiply by V to obtain

— (1) = (VX)e".

Now, recall that our candidate solution X(r) = Xe* was constructed to be the unique solution to our system
that was a scalar multiple of e*. Thus, our candidate solution is exactly the steady state solution to the
system, which we will converge to exactly when the real components of all the eigenvalues A; of our state
matrix A are less than zero.

4 Circuits with Exponential Inputs

Now we know how to handle systems of differential equations with exponential inputs, let’s see how to use
these techniques to analyze physical circuits.

Imagine that we have a large circuit involving resistors, capacitors, and inductors, driven by inputs linearly
dependent on the exponential function ¢* for some constant s. From our study of transient analysis, we
know that this circuit’s behavior can be described by the linear system of differential equations

d

&igy:Aﬂn+ﬁ0%

where ii(t) = ue® for some u independent of time, and specific voltages (across capacitors) and currents
(through inductors) form the natural components of X(7).

From our above results, we know that the steady state of this system will be of the form

so all the node voltages and elementwise currents of the circuit will be linearly dependent on ¢* in the steady
state.

The question is whether we actually have to simplify everything down to a differential equation at all? After
all, the system of differential equation only arose because the capacitor and inductor element equations
gave rise to derivatives. But what if we use our ¢ insights at the level of the circuit element equations
themselves?

Now, consider a particular capacitor C within the circuit, with node voltages V. (f) and V_(¢) at its two
terminals and a current /(¢) flowing through it.:

C
(1)
+ —
Vi(t) = V(1)

At steady state, we know from our understanding of the differential equation story above that
Vo(t) =Voe" V_(t) =V_e", and I(t) = I¢"

for some constants \7;, V_andl.
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By the known differential equation for a capacitor, we have that

1(t) = C—(Vo.(1) = V_(1))
— I = Cd—(f/:e‘Y’ —V_e")

— 1" =Cs(V,—V_)e"
— e 7).

Critically, this equation has no time-dependence - it is a purely linear equation relating some components of
x!

Similar equations can be obtained (this is a useful exercise to do) for an inductor V+ —V_=1Ls. and a
resistor V+ V_=IR. Rewriting the capacitor relationship to be in the same form, we see V+ V=1 ( =)
This suggests that we can view capacitors, inductors, and resistors as all being similar. In effect, capacitors
and inductors just have s-dependent resistances. These are called s-impedances. A capacitor has an s-
impedance of . An inductor has an s-impedance of Ls. And a resistor’s s-impedance is just the same as its
resistance R.

This reveals an approach for circuit analysis with exponential inputs, as long as all the inputs have the
same s. We can replace all the independent voltage and current sources with constant voltages and currents
corresponding to the coefficients of e*. We just replace all capacitors and inductors with their corresponding
s-impedances, and then just analyze the entire circuit as though it only had resistances it it. This can be
solved using Gaussian elimination or any other technique from 16A, and we can interpret the results to get
the steady-state solution for the system.

5 Sinusoids

Unfortunately, there’s one big issue with all the work we’ve done so far - specifically, the restrictions we
imposed on our input #(¢). We stated that #(¢) should be expressed as

-

iu(t) = ue”

for some s. What kinds of s are probably useful? If Re(s) < 0, then we know that the input approaches zero
over time, so the steady state behavior of our system is probably not very interesting. Similarly, if Re(s) > 0,
then our input will grow to infinity over time, so our state will blow up! This only leaves the case Re(s) =0
as neither blowing up or decaying away.

So then what can our input look like? If Re(s) = 0, then s must be purely imaginary. So our input will be
a linear function of e*, where st is a real multiple of j. From Euler’s formula, we know that term has some
sort of periodic, sinusoidal behavior.

Now, in our circuit differential equations, the u(z) is typically of the form
u(t) =Acos(ot + ¢),

since it arises from the output of the AC current and voltage sources in our circuit. So a purely imaginary s
seems ideal!

First, let’s establish some terminology for sinusoids. Consider the function X (¢) = A cos wr:
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You can think of X as representing an alternating current or voltage.

There are a couple properties of X that are immediately apparent from the figure: we call the maximum
value of X above the mean (in this case, the x-axis) the amplitude (A), and the spacing between repetitions
of the function the period (T =27/ w).

However, there’s one other important property of sinusoids: their phase. Consider the function Y (1) =
Acos(wt+¢).

Here, ¢ represents the phase shift of Y with respect to X. As can be seen, a positive phase shift moves the
function to the left by that amount. In particular, notice that the sine and cosine functions are really the same
sinusoid, with each just the other after a 7r/2 radian phase shift in the appropriate direction.

Now we know a little about sinusoids, let’s see how we can rewrite them in terms of exponential functions.
To do this, we will use complex numbers. We can combine Euler’s formula with the properties of complex
conjugates to determine that

e/® +e77% = (cos + jsin@) + (cos O — jsinB) = 2cos 6.

In other words, starting with two complex exponentials, we have pulled out a purely real sinusoid!

Let’s see if we can use a similar sequence of algebraic manipulations to express an arbitrary sinusoidal input
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u(t) = Acos(wt + ¢) in terms of exponential functions. From the above, we have that

I o 1 _.;
cos(0) = Eeﬂ + 56719
Lo 1
= cos(wrt+¢)= Eeﬂ‘”ﬂq) 4+ Eeﬂwtﬂqb
e]d) . equ) .
— ot = ,—jor
2 e’ + > e
= u(t) =Acos(wr+¢)
_ Ael? o Ae 79
2 2

e /9.

Therefore, we can express an arbitrary sinusoid as a linear combination of two exponential functions! Notice
that the coefficients of the two exponential functions are complex conjugates of one another. Thus, we can
rewrite the above as .

_ Ae/ ¢ jor
T2 2

Thus, the coefficient of the e/’ can be used to represent the entire sinusoid u(¢) (assuming the frequency ®
is known). We call this coefficient the phasor representing u(t), and denote it as

Jjo .
u(t Ae—e"(‘”.

Ael?
U=——.

2

Now, we know how to find the steady states of systems of differential equations with sinusoidal inputs!
First, use the above transformation to write the input as a linear combination of exponential functions e*.
Then, for each exponential function, solve the equation = (sI —A)_ﬁ derived above to determine the steady
state solution X(z) = xe'. Finally, take the superposition of all these steady states, to obtain the steady state
corresponding to the entire original input!

This approach works great! But there’s just one further optimization we can add, to simplify calculations
further. Let’s consider the case when we are working with real, sinusoidal inputs of a fixed frequency ®.

Then we know that our input can be represented as a linear combination of inputs of the forms ¢/’ and
e /o,

But, from our above construction, we know that this can’t be just any linear combination! Specifically, the
coefficients of ¢/“" and e /®" must be complex conjugates of one another! Thus, we can write our input as

i(t) = el + ie 1"
Now, let our system be

d, S q

—X(t) = AX(r) +i(1).

dr
When ii = ie’®", we know that the steady state x;e/®' for ¥(t) is such that

(joI —A)x, = i.

Similarly, when ii = ue=/®', we know that the steady state xe~/®' for ¥(¢) is such that

(—jol —A)x> = i.
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Then, we take the superposition of these two solutions to find the overall steady state solution to be
(1) = %1/ + e 1"

This solution is alright. But it requires us to solve two linear equations to find both )?1 and fz even though
they appear to be fairly similar quantities. Can we somehow simplify our calculations further so that we can
solve for Xx; in terms of X1, so we only have to perform Gaussian elimination once?

The key observation to make is that
jol—A=—jol —A,

since A is a real matrix. Thus, starting from the known solution for fl we can take complex conjugates to
obtain

I
S

I
S|

—  (—jol A% =i

The above equation is exactly the equation that )?2 has to satisfy. Thus, we see that

— =

X2 = X1,
so we can substitute and write our final solution for x(¢) as
)?(l‘) = fleja)t _1_3‘{16—1601.

So only one round of Gaussian elimination (or linear equation system solving generally) is needed, not two!

6 Phasors

In principle, at this point we already know what to do when given a circuit with sinusoidal inputs all at the
same frequency. But it can be helpful to make sure that you understand the derivations.

Let’s apply the technique we’ve just developed to study the steady-state behavior of capacitors and inductors
when supplied with a sinusoidal voltage or current signal. The key insight is that, under the condition that
Re[A;] < 0 for all eigenvalues A; of the state matrix corresponding to the circuit, we’ve shown that our steady
state solution will only consist of terms with a linear dependence on terms of the form e*, where our input
linearly depends only on those same terms. In particular, when all/ the sources in our circuit operate at some
angular frequency @, all the other (real) components of our circuit’s state will have to be real quantities
represented as linear combinations of ¢/®' and —e—/?'. But such linear combinations must also be sinusoids
of frequency w! Thus, every component of our state will be such a sinusoid!

Let’s look at a capacitor provided with the sinusoidal voltage V (t) = Vcos(@t + ¢), as shown:

Cc

P>

Vo cos ot
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Note that we aren’t assuming anything about the origin of the V (¢) - it could come from a voltage supply
directly, or from some other complicated circuit. We see that we can write

Voejq) . Voefjd) .
V(t) = Jj ot Jjor
5 e’ + B )
so it can be represented by the phasor _
v o V()ej(p
==
Now, by the capacitor equation, we know that
d
I(t)=C=-V(t
() =CLV0)
_c4 (Wejwz+wejwt>
dt 2 2
joVoe ., —joVoe I ...
=C ?eJ + B — J

_ joCVyel? pior 4 = joCVye=I? oo
2 2 ’

so we can represent the current as the phasor

~ 1ICoV, Jjo ~
T= % = (joC)V.

In other words, having already shown that all steady state circuit quantities will be sinusoids with frequency
®, we now in fact can relate the phasors of the voltage across and the current through a capacitor by a ratio
that depends only on the frequency and the capacitance.

This is exactly the same as the s-impedance story we told earlier. Because of this, when dealing with
sinusoidal inputs at frequency @, we use s = + j® and just call the s-impedance, the impedance. The + jw
is understood from context.

As before, this can be thought of as the “resistance” of a capacitor, since it relates the phasor representations
voltage and current over and through the element by a constant ratio. For a capacitor, the impedance is

The interesting fact is that the impedance for the capacitor is imaginary.
We will now quickly perform a similar analysis for inductors and resistors.

Imagine some resistor R as follows:
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Let V(r) be represented by some phasor V. Thus, by Ohm’s Law,

so the impedance is clearly
Zr =R.

From this, we see that the impedance behaves very much like the resistance does, except that it generalizes
to other circuit components.

Now, we will consider inductors. From our previous consideration of complex numbers, we have seen
that any sinusoidal function can be represented by a phasor. Since we know that our steady states will all
be sinusoids with the same frequency ®, we can start with a sinusoidal current and work in the opposite
direction to calculate the impedance of an inductor, as follows.

Consider an inductor with voltage and current across it as follows:

L 1)
o Y Y Y50
+ v —

Let the current /() be represented by some phasor 1. Thus, by the equation of an inductor,

I(t) = 17 4 e/

dr

dr

= joLle " — joLle

= V(@)=L

= joLle™ +mefjwt,
so the voltage can be represented by the phasor
V= ja)LI~.
Thus, the impedance of an inductor is
Z; = joL.
7 Circuit Analysis
At this point, observe that we have essentially obtained “equivalents” to Ohm’s Law for inductors and

capacitors, using the impedance to relate their voltage and current phasors.
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We will now try to show that a sum of sinusoidal functions is zero if and only if the sum of the phasors
of each of those functions equals zero as well, to obtain a sort of “phasor-version” of KCL. Consider the
sinusoids represented by the phasors

71)727"'7111'

Let I (¢) be the sinusoid represented by the phasor 1.
Observe that

L+bL+...+1,=0
(4Dt A1) + (h+ b+ +1)e 7 =0

n P
Z e’ + e 7% =0
k=1

[

L(t)+hL(t)+...+1,(t) =0,
so we have proved that a sum of sinusoids is zero if and only if the sum of their corresponding phasors is
zero as well. This result can be thought of as a generalization of KCL to phasors.

Putting everything together, we have now successfully generalized all of our techniques of DC analysis to
frequency analysis. We can finally consider some basic circuits, to verify that our technique works correctly.

Consider a voltage divider, where instead of one resistor we introduce a capacitor, as follows:

Vo cos a)—tl—@ u(t)

We are interested in knowing how the voltage u(f) varies over time. Recall that we proved the voltage
divider equation in the context of DC circuit analysis. However, that proof carries over to the phasor domain
in a straightforward manner. Thus, the phasor u representing the voltage u(r) can be represented in terms of
the phasor 1% representing the supply voltage as follows:

~ Zr %
n=—--V,
Zc+Zg

where Z¢ and Zy are the impedances of the capacitor and resistor, respectively. Note also that, since the
supply is at frequency @, all other voltages and currents in the system will also be at the same frequency ®.
Thus, using our results from earlier, we know that
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and
Zr =R.

Note also that V =V, /2, using our equation for cos 6 from earlier.
Substituting these values into our equation for i, we find that

_ R)2
0= """V
ac R

Finally, we can plug this result straight back into our equation relating phasors to real-valued sinusoids, to
obtain

u(t) = e’ ™ + e /™
= 2|u| cos(wt + Lu)

Vi
= 0 cos (@t +atan2(1, ®RC)).

1+ 1/(@RC)?

A Warning

Be aware that in this course phasors are defined slightly differently from how it is often done elsewhere.
Essentially, there is a factor of 2 difference.

In this course, we define the phasor representation X of a sinusoid x(t) to be such that
x(t) = Xel® +Xe IO,
However, elsewhere, the phasor representation may be defined such that
L s jor | 5 —jor
x(t) = E(Xe’ +Xe /).

Our definition is more natural and aligns to what you will see in later courses when you learn about Laplace
and Fourier transforms. This is because our definition arises from the mathematics, and the same spirit of
definition works even when working with inputs of the form e* where s is not a purely imaginary number.

But then why would anyone ever use the alternative, more common definition? Its main advantage is that the
magnitude of the phasor equals the amplitude of the signal. For instance, if we have the signal A cos(w? + ¢),
then the alternative definition yields the phasor Ae/?, with magnitude A. In contrast, our definition yields the
phasor (A/2)e/?. The former definition is convenient when conducting physical observations - when using
an oscilloscope, one can easily seeE] the amplitude A of a signal, not the half-amplitude A /2.

Furthermore, it turns out that there are some slight calculation advantages (i.e. it makes some formulas
simpler) to the more common definition when working with power systems and power electronics, which
you may see if you take the relevant upper-division EE courses. However, for the purposes of the scope of
this course, our definition is simpler and easier to understand, so we will stick with it throughout.

Of course, if the mathematics is done correctly, there is no real difference between the two definitions, in

!Actually in practice, if there is a DC component to the circuit — i.e. there are some inputs that are constants too — then the
easiest thing to see is the peak-to-peak swing of the voltage which corresponds to twice the amplitude. So even the more common
definition often forces the person using it to have to divide by two.
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that both describe the same physical behaviors. It is just easier to do the mathematics correctly with the
definiton we use here.
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