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1. Eigenvalues Placement in Discrete Time
Consider the following linear discrete time system

Fr+1] = [‘2’ _11] %)+

1 "
0] ule] + 1] M)

(a) Is the system given in eq. (1) stable?
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(b) i ce representation of the resulting closed loop system using state feedback of the form
ult] = [kl k2] .

Z\ Hint: If you’re having trouble parsing this expression for u(t], note that [kl kz} is a row vector, while

X[t] is a column vector. What happens when we multiply a row vector with a column vector like this?
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(c) Find the appropriate state feedback constants, k1, k>, that place the eigenvalues of the state space rep-
resentation matrix at A = —%,lz = %
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(d) Is the system now stable?
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(e) Suppose that instead of [(1)] uft] in eq. (1), we had l} u[t] as the way that the discrete-time control
acted on the system. As before, we use u[t] = [kl ko | X[t] to try and control the system. What would
the eigenvalues be? Can you move all the eigenvalues to where you want? Give an intuitive explanation

of what is going on. J W
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. Controlling states by designing sequences of inputs

This is something that you saw in 16A in the Segway problem. In that problem, you were given a semi-
realistic model for a segway. Here, we are just going to consider the following matrix chosen for ease of
understanding what is going on:

0100 0
0010 2 0
A= 0001 b= 0
0000 1
Let’s assume we have a discrete-time system defined as follows:

Xt +1] = AX[t] + bult].
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(a) We are given the initial condition X[0] = . Let’s say we want to achieve X[T] = for some

AW N =

0
specific T > 0. We don’t need to stay there, we just want to be in this state at that time. What is the
smallest T such that this is possible? What is our choice of sequence of inputs u[]?
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(b) What if we started from ¥[0] =

0
|:;] ? What is the smallest 7 and what is our choice of u[t]?
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(c) What if we started from ¥[0] =

at is the smallest 7 and what is our choice of u[t]?
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3. Uncontrollability
Consider the following discrete-time system with %given initial state:

2 00 0
He+1]= -3 0 1|Xt]+ |0]uff]
10 2

(a) Is the system controllable?
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(b) Is it possible to reach X[T] = [4] for some ¢ = 7'? For what input sequence u[fjuptot =T —1?
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(c) Is it possible to reach ¥[T| = |:—3] for some ¢ = T'? For what input sequence u[tfjuptot =7 —1?
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(d) Find the set of all possible states reachable after two timesteps.
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