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1. Gram-Schmidt Algorithm

Let’s apply Gram-Schmidt orthonormalization to a set of three linearly independent vectors {57,5>,53}.

(a) Find unit vector g such that span({g;}) = span({s1}).
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(b) Given g; from the previous step, find g, such that span({g1,g.}) = span({s1,52}) and g, is orthogonal
to ¢;.
What would happen if {5},5>,53} were not linearly independent, but rather §; were a multiple of 5,?




(c) Now given g; and g, in the previous steps, find g3 such that span({g, g, q3}) = span({51,5>,53}), an
gs is orthogonal to both g; and g, and finally ||g3|| = 1.

(d) Let’s extend this algorithm to n linearly independent vectors. That is, given an input {57i,...,5,},
write the algorithm to calculate the orthonormal set of vectors {g, ..., g, }, where span({51,...,5,}) =

Span({ql geee aqn})'
Hint: How would you calculate the i"” vecto
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2. The Order of Gram-Schmidt

If we are performing the Gram-Schmidt method on a set of/ vectogs, does the order in which we take the
vectors matter? Consider the set of vectors
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(a) Perform Gram-Schmidt on these vectors first in the order v, v, V3.
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(b) Now perform Gram-Schmidt on these vectors in the o

rdc:r Vs, Vo, V1. wo you get the same result?
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