EECS 16B DJS 9B Craoyne
Grem Samidt
a set of linearly independent vectors
$\{\vec{S}_1, \vec{S}_2, \dots, \vec{S}_k\}$
Want: { ? Je} their spans the same
Want: { J Jk} their spans the same k-dimensioned subspace as {5,, 5k}
Zr Si
3. S.
An Vi
• • • • • • • • • • • • • • • • • • •

1. Gram-Schmidt Algorithm

Let's apply Gram-Schmidt orthonormalization to a set of three linearly independent vectors $\{\vec{s}_1, \vec{s}_2, \vec{s}_3\}$.

(a) Find unit vector \vec{q}_1 such that $span(\{\vec{q}_1\}) = span(\{\vec{s}_1\})$.

(b) Given \vec{q}_1 from the previous step, find \vec{q}_2 such that span $(\{\vec{q}_1, \vec{q}_2\}) = \text{span}(\{\vec{s}_1, \vec{s}_2\})$ and \vec{q}_2 is orthogonal to \vec{q}_1 .

What would happen if $\{\vec{s}_1, \vec{s}_2, \vec{s}_3\}$ were *not* linearly independent, but rather \vec{s}_1 were a multiple of \vec{s}_2 ?

$$\frac{3}{3} = \frac{3}{12}$$

$$\frac{\vec{z}_1 = 0}{\vec{z}_2} = \frac{\vec{z}_2}{\|\vec{z}_1\|_{\epsilon}}$$

(c) Now given \vec{q}_1 and \vec{q}_2 in the previous steps, find \vec{q}_3 such that span $(\{\vec{q}_1, \vec{q}_2, \vec{q}_3\}) = \text{span}(\{\vec{s}_1, \vec{s}_2, \vec{s}_3\})$, and \vec{q}_3 is orthogonal to both \vec{q}_1 and \vec{q}_2 , and finally $||\vec{q}_3|| = 1$.

(d) Let's extend this algorithm to n linearly independent vectors. That is, given an input $\{\vec{s}_1,\ldots,\vec{s}_n\}$, write the algorithm to calculate the orthonormal set of vectors $\{\vec{q}_1,\ldots,\vec{q}_n\}$, where span $(\{\vec{s}_1,\ldots,\vec{s}_n\}) = \operatorname{span}(\{\vec{q}_1,\ldots,\vec{q}_n\})$.

Hint: How would you calculate the i^{th} vector, \vec{q}_{1} ?

Step 1:
$$\frac{7}{5}$$
 = $\frac{5}{115}$

normalize
$$\vec{z}_i$$
 to for \vec{z}_i

$$\vec{z}_i = \frac{\vec{z}_i}{\|\vec{z}_i\|}$$

2. The Order of Gram-Schmidt

If we are performing the Gram-Schmidt method on a set of vectors, does the order in which we take the vectors matter? Consider the set of vectors

$$\vec{v_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \qquad \vec{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

(a) Perform Gram-Schmidt on these vectors first in the order \vec{v}_1 , \vec{v}_2 , \vec{v}_3 .

$$\vec{Q}_{2} = \vec{V}_{2} - (\vec{V}_{2}^{T}\vec{Q}_{1})\vec{Q}_{1} = \vec{V}_{2} - \vec{Q}_{1} = \vec{V}_{0}$$

$$\sqrt{3} = \overline{V_3} - (\overline{V_3}^{\dagger} \overline{q}_1) \overline{q}_1 - (\overline{V_3}^{\dagger} \overline{q}_2) \overline{q}_2$$

$$= \vec{V}_3 - \vec{q}_1 - \vec{q}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

(b) Now perform Gram-Schmidt on these vectors in the order \vec{v}_3 , \vec{v}_2 , \vec{v}_1 . Do you get the same result?

$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1$$

$$\overline{Z}_2 = \overline{V}_2 - (\overline{V}_2 \overline{q}_1) \overline{q}_1$$

$$= V_2 - \sqrt{\frac{2}{5}}\sqrt{1}$$

$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{6}} = \frac{1$$

$$\{\overline{q}, \overline{q}, \overline{q}, \overline{q}\}$$

