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EECS 16B Designing Information Devices and Systems II
Fall 2019 Note: DFT

Overview
We have seen how polynomial interpolation can be used to fit an (m− 1)-degree polynomial to any set of
m points with distinct x-coordinates. Often, however, we are not given these x-coordinates explicitly. For
instance, we may be given a sequence of observations y1,y2, . . . ,ym, told that they are values sampled at a
uniform rate from some sensor, and asked to interpolate between them. The meta-data from our sensor is
always present in terms of when each sample was actually taken, but we have considerable flexibility in how
we use it.

In this note, we will look at various natural ways of doing this interpolation and see how each one falls short.
More important than the specific ways that each falls short is how confronting each of these obstacles helps
us open our mind more truly to the possibilities and helps us design ways that overcome the obstacles that
we faced. This will ultimately lead us to a family of ideas called the Discrete Fourier Transform via this
interpolation context.

1 Problems with real-valued polynomials
One natural way of doing interpolation is to write our observations as

(0,y1),(∆,y2),(2∆,y3), . . . ,((m−1)∆,ym−1),

where ∆ is the time between observations, and then use polynomial interpolation to express y as a continuous
function of time.

We know that polynomial interpolation uses a parametric function

g(x) = α0 +α1x+α2x2 + . . .+αm−1xm−1,

that is a linear combination of the monomials x0,x1,x2, . . . ,xm−1. The αi are the parameters that define the
function. We proved last time that polynomial interpolation will always work, meaning that g(x) will pass
through all our sample points exactly.

So what’s more to do? As it turns out, although polynomial interpolation always produces an interpolation,
it is not always a particularly desirable one. Let’s try to see why. Imagine that we had a reasonably large
number of samples - say, m = 100. Then our monomial basis will consist of the functions

x0,x1,x2, . . . ,x99.

The problem here is that x99 is really not a very nice function to work with over the reals. When x is just
slightly less than 1, x99 quickly drops to zero. Try (0.9)99 ≈ 0.00003 for example. Similarly, when x is
just slightly greater than 1, the x99 starts blowing up rapidly. Try (1.1)99 ≈ 12500. That is a huge dynamic
range over a span of just 0.2. The consequence of this is that our coefficients αi similarly become very small
or very large in order to control these high-degree monomials, which is undesirable. The effect is that our
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polynomial interpolations quickly become unreasonable - they may technically pass through all the sample
points, but act “unreasonably” everywhere else.

Numbers don’t have to get big before you start seeing this effect. For example, consider the following
polynomial fit of m = 11 points:
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“True signal”
Discrete-time samples

Polynomial fit

Eleven is not that big of a number, and this is already starting to be pretty nasty in terms of how it is behaving.
The fit turned out to be1 −220.94174208145742∗x10+494.90950226246065∗x8+−381.43382352942115∗
x6 +123.35972850678912∗x4 +−16.85520361990966∗x2 +1 and the magnitude of those coefficients are
getting big for the leading terms. In turn, these large coefficients are inducing oscillations present that did
not exist in the original dataset.

Clearly, a better method of interpolation is needed for global approximation.

2 Escaping the desert of the reals: polynomials over the unit circle
Fundamentally, the problems we have faced with polynomial interpolation come down to the poor behavior
of high-degree monomials away from |x|= 1, since their magnitudes vary enormously. We actually under-
stand this very well since we have already seen the concept of stability for discrete-time systems. The reason
that eigenvalues with magnitude less than 1 are stable is that raising them to high powers results in values
close to zero, and hence the influence of disturbances a long time ago decays away. Similarly, eigenvalues
with magnitudes greater than 1 cause violent instability because raising them to high powers blows up, and
hence even small disturbances compound to overwhelm us. However, there are only two real numbers with
absolute value equal to 1, so, with a large number of samples, we clearly cannot all place them such that
|xi|= 1.

Or can we? If we allow ourselves to use complex numbers, then we have infinitely many values z such that
|z| = 1. We know that any complex number of the form e jθ , where θ is real, lies on the unit circle on the
complex plane. We know from our studies of stability that the unit circle is special2 — large powers neither

1Why are there only even terms here? Because all the odd terms are zero because the function we are interpolating is symmetric
about the origin f (x) = f (−x).

2It turns out that this property of not blowing up or shrinking to zero also occurs elsewhere — in finite fields. You will learn
about finite fields in our successor course 70, and can learn even more about them in abstract algebra courses like Math 113 and
Math 114. The fact that one can take large powers in finite fields without problems of instability turns out to be very useful
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blow up nor go to zero. So, given a sequence y1,y2, . . . ,ym, we may choose our x-coordinates to be such that
our points become

(1,y1),(e2π j/m,y2),(e2·2π j/m,y3), . . . ,(e(m−1)·2π j/m,ym−1).

In other words, we let
xi = (e j 2π

m )i−1 = ω
i−1
m , ∀i ∈ {1,2,3, . . . ,m}

where ωm = e j 2π

m is the mth primitive root of unity.

We plot the xi below on the complex plane, in the case of m = 5. Notice that they are all distinct, of
magnitude 1, and equally spaced around the complex unit circle.

Re{z}

Im{z}

x1

x2

x3

x4

x5

We can see clearly that the k-th power of e jθ is e jkθ = cos(kθ)+ j sin(kθ) which always has a real part and
imaginary part bounded by 1. Notice also the qualitative connection with what we traditionally associate
with high degree polynomials — higher degrees are more “wiggly” than lower degrees. We get all these
nice features without any of the pain of either blowing up or shrinking to zero. So this problem related to
stability has been entirely exorcised.

3 Interpolating using complex numbers
Now, we can perform polynomial interpolation as usual, using these new, complex, values of xi. Our previ-
ous results on the linear independence of the columns of a Vandermonde matrix still apply, since we never
assumed there that our values were real. Thus, if our parametric function looks like

g(x) = α0 +α1x+α2x2 + . . .+αm−1xm−1

for communication-type applications like error-correcting codes and cryptography. This is also why Fourier-type analysis is also
practiced in those areas.
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with the coefficients/parameters stacked into a vector ~α , then we have

B~α =


1 x1 x2

1 · · · xm−1
1

1 x2 x2
2 · · · xm−1

2
...

...
. . .

...
1 xm x2

m · · · xm−1
m

~α =~y.

Note that the matrix B is the same as the matrix B in the interpolation note, and the~y are the samples.

Now, substituting in our chosen values for the xi, our equation becomes
ω0·0

m ω0·1
m ω0·2

m · · · ω
0·(m−1)
m

ω1·0
m ω1·1

m ω1·2
m · · · ω

1·(m−1)
m

...
...

...
. . .

...

ω
(m−1)·0
m ω

(m−1)·1
m ω

(m−1)·2
m · · · ω

(m−1)·(m−1)
m

~α =~y.

When working with real numbers, the k-th column of our matrix B was composed of the stacked evaluations
of the monomials xk at x1,x2, . . . ,xm. The same is true here, where now, because of our choice of xi, they
are the stacked evaluations of the monomials xk at ω0

m,ω
1
m, . . . ,ω

m−1
m . As they are linearly independent, they

continue to form a basis, so we can make any~y as a linear combination of the columns of B.

It turns out that this particular B = [~b0,~b1, · · · ,~bm−1] matrix has a couple of nice properties that will be
convenient for us later. First, notice that it is symmetric, by construction. Furthermore, we can compute the
(squared) norm of each column (or row!) to be

‖~bi‖2 = 〈~bk,~bk〉
=~b∗k~bk

=
m−1

∑
i=0

ωk·i
m ·ωk·i

m

=
m−1

∑
i=0

ω
−k·i
m ·ωk·i

m

=
m−1

∑
i=0

1

= m.

Notice that, since~bk is a complex vector, we must take care to use the complex inner product when com-
puting its norm. This involves a conjugate transpose instead of a transpose as in the real inner product. This
result tells us that all the rows and columns of our B matrix have the same norm

√
m.
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Furthermore, consider the inner product of any two different columns,~ba and~bb. We see that

〈~ba,~bb〉=~b∗b~ba

=
m−1

∑
i=0

ωb·i
m ω

a·i
m

=
m−1

∑
i=0

ω
(a−b)·i
m .

This is a finite geometric series with m terms and common ratio ωa−b
m . Since this common ratio is not equal

to 1, we can use the known formula for the sum of finite geometric series, to see that

〈~ba,~bb〉=

(
ωa−b

m

)m
−1

ω
a−b
m −1

=

(
ωm

m
)a−b−1

ω
a−b
m −1

But since ωm is an mth root of unity, ωm
m = 1. Thus,

〈~ba,~bb〉=
1a−b−1
ω

a−b
m −1

= 0.

In other words, all the columns of B are mutually orthogonal. We can go a step further! Since all the columns
have the same norm

√
m, we can normalize each column to obtain

U =
1√
m

B,

which has orthogonal columns of unit norm, and so is a complex orthonormal matrix!

Recall that we started with the equation B~α =~y. We were searching for the coefficients αi. Since B is known
to be a square matrix of full rank, we can pre-multiply by its inverse to obtain

~α = B−1~y.

But now, since U is a square orthonormal matrix, we know that its inverse equals its conjugate transpose,
U−1 =U∗. Thus, we see that the inverse of B is

B−1 = (
√

mU)−1 = (
√

m)−1U−1 =
1√
m

U∗ =
1√
m

(
1√
m

B
)∗

=
1
m

B∗.

Substituting back, we find that the coefficients of our desired polynomial interpolation are

~α =
1
m

B∗~y.

The ~α are called the (polynomial-style) DFT coefficients that correspond to the vector ~y. Often, an upper-
case letter is used for them so~Y = ~α and satisfies~y = B~Y . Equivalently,~Y = 1

m B∗~y and hence Y [i] = 1
m
~b∗i~y.

Notice that B∗ is a matrix with terms all of the same magnitude (1), and so (assuming that all the elements
of ~y are about the same size) it is intuitive to expect that the DFT coefficients (1/m)B∗~y is a vector whose
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elements are within the same order of magnitude. Thus, by switching to samples taken on the unit circle
over the complex plane, it seems that we have resolved the problem we had with our real polynomial inter-
polations, where the coefficients varied hugely in their magnitudes because the basis functions were poorly
behaved over the points of interest.

4 Problems with our interpolation
Now that we have all this machinery available to us, let’s try a simple example. Let our observations be

~y =
[
0 1 0

]>
,

so m = 3.

Substituting, our B matrix becomes

B =

1 1 1
1 e j2π/3 e j4π/3

1 e j4π/3 e j2π/3

 .
Thus, we can solve for the coefficients of our polynomial interpolation, to obtain

~α =
1
3

1 1 1
1 e2 jπ/3 e4 jπ/3

1 e4 jπ/3 e2 jπ/3


∗0

1
0


=

1
3

 1
e−2 jπ/3

e−4 jπ/3

 .
So our polynomial interpolation is

g(x) =
1
3
+

e−2 jπ/3

3
x+

e−4 jπ/3

3
x2.

We can verify that g(x) passes through our three observations. So are we done now?

Well, we really want to interpolate between our samples. Since our samples are located at ω i
3 = e j 2π

3 i for
i ∈ {0,1,2}, it makes sense to look at how g(x) behaves at e jθ for all θ ∈ [0,2π), in order to obtain an
equivalent to our previous real-valued polynomial interpolations. Here, our samples are interpreted as being
at θ = 0, 2π

3 , 4π

3 . Doing so, we obtain

g(e jθ ) =
1
3

(
1+ e−2 jπ/3e jθ + e−4 jπ/3e j2θ

)
=

1
3
(
1+ cos(θ −2π/3)+ cos(2θ −4π/3)

)
+

j
3
(
sin(θ −2π/3)+ sin(2θ −4π/3)

)
.

Plotting the real and imaginary parts of this interpolation, we obtain:
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At θ ∈ {0,e j 2π

3 ,e j 2π

3 2}, we can see that the imaginary component of our interpolation is 0 and the real
component matches the sampled yi, as expected. Unfortunately, everywhere in between, our interpolation
has a nonzero imaginary component!

This is probably not what we wanted. Starting with only real sample points, we’d probably want our inter-
polated values between the samples to be real as well. So this is a problem. What can we do about it? Do
we have any freedom?

5 Changing the basis functions without changing the matrix B

To resolve this, we will try to do as little work as possible. We have already got a pretty good method
for finding parameter values — a unique solution always exists, the coefficients are all of similar orders of
magnitude, and the B matrix has lots of nice properties. It is easy to invert. Because of the orthogonality
properties inherent in B, it is also very easy to project onto subspaces that are defined by a subset of the
columns — we can just keep those coefficients and zero out the others. This means that it is also very
compatible with least-squares fitting. The only issue is that our interpolation has a nonzero imaginary
component even when given purely real points to interpolate.

We want to make the smallest change possible to our approach such that, assuming we start with real samples
yi, we can be assured that our interpolation h(e jθ ) is real for all real θ . In particular, we want to keep the
same B matrix and αis, but just change the parametric function we use to interpolate. In other words, we
want to change the basis functions.

5.1 Taking a closer look at what is going on
It is worth actually looking at an example of what the DFT basis vectors ~bk or ~uk look like. These are
essentially complex exponentials, and as the k increases, they “wiggle” more and more. This is why k is
often referred to as the frequency associated with that vector. They always have an integer number of periods
between in the total duration m.

Here, we will illustrate ~uk for the m = 10. The only reason we have chosen to illustrate ~uk instead of~bk is
so that the magnitude plot in polar coordinates of what the values inside the vector is will be slightly less
boring. For~bk, the magnitude of every entry in the vector is 1. Here, for the Cartesian Coordinates plots, we
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have also drawn the underlying complex exponential that is being sampled to create the specific DFT basis
vector being illustrated.

k uk[t] Unit circle plots Cartesian coordinates plots Polar coordinates plots
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10 <

=

u[0]

u[1]

u[2]

u[3]

u[4]

u[5]

u[6]

u[7]

u[8]

u[9]

7 e j 2π7t
10

<

=

u[0]

u[1]

u[2] u[3]

u[4]

u[5]

u[6]

u[7]u[8]

u[9]

8 e j 2π8t
10 <

=

u[0]

u[1]
u[2]

u[3]
u[4]

u[5]

u[6]

u[7]

u[8]

u[9]

© UCB EECS 16B, Fall 2019. All Rights Reserved. This may not be publicly shared without explicit permission. 10



Note: DFT @ 2020-01-21 01:01:23-08:00

9 e j 2π9t
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=

O
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Looking at these vectors, we see that there are lots of symmetries in them. We also notice that there is
a curious deja-vu feeling when looking at the circle diagrams — we go decagon to pentagon to lotus to
pentagram to line and then walk back in the reverse order: back to pentagram (but reversed arrows), to lotus
(also reversed arrows), to pentagon (reversed arrows again), to decagon (also reversed). The labels are also
mirrored across the real axis, which tells us that there is a complex conjugation that is happening.

5.2 Returning to interpolation
Currently, our interpolation is of the form

g(e jθ ) = α0 +α1e jθ +α2e j2θ + · · ·+αm−1e j(m−1)θ .

We would like to suppress the imaginary components of our interpolation. One way of doing so would be
to add the complex conjugates of each term, so only the real terms remain. But there is no obvious way of
getting complex conjugates to appear in our above equation without changing the coefficients αi.

To do so, we need to take a closer look at our coefficients. Looking at one row of our equation for ~α , we see
that

αi =
1
m

m−1

∑
k=0

B∗[i][k]yk

=
1
m

m−1

∑
k=0

ω
−i·k
m yk.

Thus, since the y j are real, its conjugate must equal

αi =
1
m

m−1

∑
k=0

ω
i·k
m yk.

But as ωm is an mth root of unity,
ω

i·k
m = ω

i·k−k·m
m = ω

k(i−m)
m .

This is the mirroring across the real axis that we were seeing in the circle diagrams of the labels! This
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means:

αi =
1
m

m−1

∑
k=0

ω
k(i−m)yk =

1
m

m−1

∑
k=0

ω
−k(m−i)yk = αm−i.

In other words, the conjugates of the coefficients αi are simply the coefficients of the “reversed” coefficient
vector ~α .

So now we have some hope for leveraging complex conjugates! We remember from Phasor Analysis of
circuits that by using a complex exponential with a negative sign together with every use with a positive
sign, we will get real valued functions as long the coefficients are complex conjugates.

So can we do this? We originally generated the k-th column of the B matrix by viewing them as samples
from the monomial “xk” evaluated at the m-th roots of unity. How can we just change the function?

5.3 Aliases
This is where we get to a matter that is at the heart of all machine learning. Trying to learn a function from a
finite amount of data is fundamentally an underspecified problem because there are always infinitely many
functions that pass through any finite amount of data. If we view the actual data as a thing or object, we
can view the abstract function that generated the data as its “name.” The issue is that the same data has
many possible names3. This issue is called “aliasing” in the literature. When we want to interpolate at some
point where hadn’t collected data, we need to summon4 forth an evaluation by calling a specific name. This
disambiguation is something that we are always doing, either implicitly or explicitly.

In this case, the symmetries inherent in the roots of unity let us see lots of the different names/functions that
correspond to our columns of the B matrix. In particular, if we look at the k-th column~bk, we see that it
could have come from any formal monomial “xk+qm” for any integer q. This is because5 we can look at the
i-th entry in~bk and notice that (ω i

m)
k+qm = ω ik

m ω
qmi
m = ωki

m (ω
m
m )

qi = ωki
m (1)

qi = ωki
m .

This means we are free to summon forth any of these or even any convex combination (a linear combination
where the weights sum to 1) of these “xk+qm” and these are all valid choices. The resulting functions will
interpolate all the data points.

6 “Natural” interpolation using the DFT coefficients
The reality of aliasing tells us that we need to make a choice for which functions to use to interpolate. We
know what we want in this case. We want to be able to get real values for our interpolation if our original
data was real, and this means that we need to leverage complex conjugates. This means that since we have
α1 = αm−1 we would prefer to summon forth x−1 instead of xm−1 associated with the parameter αm−1. This
is valid because −1 = m−1+(−1)m and hence x−1 and xm−1 are both aliases of the last column of the B
matrix. The same applies for~bm−2 — we can view this as coming from x−2 and so on. This allows us to
pair up the terms and cancel out all the imaginary parts.

3Notice how this classical terminology is somewhat curiously sample-centric. It views the sampled vectors as being the objects
and the functions as being “names” — and so the same vector has many aliases. You might argue that reality is actually reversed and
the phenomenon is actually one of Dopplegangers. The functions are the actual objects of interest. And many different functions
can look the same if you only sample them at those points. The name of the game here is in choosing among these Dopplegangers.

4It is this deep cultural connection to the idea of “true name magic” that explains the classical terminology. When programming,
we “invoke” and “call” functions — by saying their names. We do this to make them manifest. You saw this more deeply in 61A
when you were doing your interpreter project. As a result, as engineers, names have power for us. Hence this curious terminology.
Anyway, you’ll get used to it.

5Because we are dealing with integer powers, we are allowed to do these manipulations.
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6.1 The case of m odd
The story becomes easiest to understand if we stick to m being an odd number. Then, we have the 0-th
coefficient for the constant term and the rest of the coefficients divide evenly into pairs. Imagine that we
could replace the second half of the monomial terms with their conjugates, to obtain the new interpolation

h(e jθ ) = α0 +
(m−1)/2

∑
i=1

(
αie jiθ +αm−ie− jiθ

)
= α0 +

(m−1)/2

∑
i=1

(
αie jiθ +αie jiθ

)
.

The second equality is where we used the realness of the underlying~y that we are interpolating.

Clearly, this interpolation is real, since each of the terms in the summation are real (by the property that
adding a complex number to its conjugate gives twice the real part). But does it still pass through all of
our sample points? It should by construction, but let’s verify this. Since our sample points are of the form
(ω i−1

m ,yi), we can set up the system of equations to check as:
h(ω0

m)
h(ω1

m)
...

h(ωm−1
m )

=~y.

Now, we can simplify the sum step by step. We start by splitting up the summation that defines our interpo-
lation h(·):

h(ωk
m) = α0 +

(m−1)/2

∑
i=1

αi(ω
k
m)

i +
(m−1)/2

∑
i=1

αi(ωk
m)

i

= α0 +
(m−1)/2

∑
i=1

αi(ω
k
m)

i +
(m+1)/2

∑
i=m−1

αm−i(ωk
m)

m−i (looking at the second sum backwards)

= α0 +
(m−1)/2

∑
i=1

αi(ω
k
m)

i +
m−1

∑
i=(m+1)/2

αi(ω
k
m)

i−m (conjugacy properties)

= α0 +
(m−1)/2

∑
i=1

αi(ω
k
m)

i +
m−1

∑
i=(m+1)/2

αi(ω
k
m)

i (root of unity property)

= α0 +
m−1

∑
i=1

αi(ω
k
m)

i.

So despite the different function being used to interpolate, on the sample points ωk
m, it returns exactly the

same thing as the traditional polynomial interpretation. Recall that we originally chose our ~α to satisfy
the equation B~α = ~y. Recall how we constructed the columns ~bi. Each of them were the evaluation of
the ith basis function on the x-coordinates of our sample points. After changing our basis functions, the
key observation is that although the functions are changed, their evaluations on these coordinates remain
the same. Since the αi were chosen to satisfy polynomial interpolation, this new function also interpolates
perfectly.

So even after changing the basis functions used for the linearly parameterized function that we want to learn,
the same B matrix remains valid, so the equation B~α =~y remains a necessary and sufficient condition in
order for the interpolation to pass through all our sample points. Thus, what we can do is compute ~α as
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before, then plug into the new interpolation h(·), to get a purely real interpolation that passes through all of
our sample points. So we have found exactly the interpolation that we want.

Let’s verify that it works by returning to our example of interpolating ~y =

0
1
0

. Recall that we got ~Y =

1
3

 1
e−2 jπ/3

e−4 jπ/3

 for the DFT coefficients. Putting them into our interpolation we get

h(x) =
1
3
+

e−2 jπ/3

3
x+

e−4 jπ/3

3
x−1

and expanding this out for arbitrary x = e jθ on the unit circle, we get

h(e jθ ) =
1
3
+

e− j2π/3

3
e jθ +

e+ j2π/3

3
e− jθ =

1
3
(1+2cos

(
θ − 2π

3

)
)

Plotting the real and imaginary parts of this interpolation, we obtain:

0 1 2 3 4 5 6

−0.5

0

0.5

1

1.5

θ

h(
ejθ

)

Re[h(e jθ )]

Im[h(e jθ )]
Discrete-time samples

This clearly feels like a qualitatively “simpler” interpolation and thus satisfies our intuition for what Occam’s
razor demands.

Returning to our example of 11 points. The values were ~y = [ 1
26 ,

1
16 ,

1
10 ,

1
5 ,

1
2 ,1,

1
2 ,

1
5 ,

1
10 ,

1
16 ,

1
26 ]
>. The DFT

coefficients ~Y = 1
11 B∗~y and these can be used to get an interpolation Y [0] +∑

5
k=1Y [k]e jkθ +Y [k]e− jiθ =

Y [0]+ 2∑
5
k=1 |Y [k]|cos

(
kθ +∠Y [k]

)
. gives us a DFT-based interpolation of 0.255+(−0.159− j0.047)e jθ +

(−0.159+ j0.047)e− jθ +(0.077+ j0.050)e j2θ +(0.077− j0.050)e− j2θ +(−0.036− j0.042)e j3θ +(−0.036+ j0.042)e− j3θ +

(0.014+ j0.030)e j4θ +(0.014− j0.030)e− j4θ +(−0.004− j0.026)e j5θ +(−0.004+ j0.026)e− j5θ This interpola-
tion has the sampled points being viewed as being regularly spaced starting at 0 and heading towards 2π .

However, the meta-data tells us that the samples were taken at−1,−0.8,−0.6,−0.4,−0.2,0,0.2,0.4,0.6,0.8,1.
If we want to use the meta-data to line up the points and get an interpolation function in terms of the orig-
inal points, we need to find the affine translation between the original x and θ . Here −1 for x translates to
θ0 = 0. While +1 for x translates to θ10 =

2π10
11 . This means that θ(x) = 2π5

11 + 2π5
11 x is the affine map from
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original x inputs to the corresponding θ . We see that θ(−1) = 0,θ(−0.8) = 2π

11 ,θ(−0.6) = 2π2
11 ,θ(−0.4) =

2π3
11 ,θ(−0.2) = 2π4

11 ,θ(0) = 2π5
11 ,θ(0.2) = 2π6

11 ,θ(0.4) = 2π7
11 ,θ(0.6) = 2π8

11 ,θ(0.8) = 2π9
11 ,θ(1) = 2π10

11 .

Using this we can plot:

−1 −0.5 0 0.5 1

0

1

2

t

“True signal”
samples
DFT fit

naive poly fit

Notice how much better and more natural the DFT-based interpolation is for this data. This naturalness is
why we use DFT-based interpolations or analogous DFT-based projections to get global approximations for
data. Notice that this is indeed an approximation — the interpolation doesn’t get our “true signal” perfectly
right, but getting it perfectly right is in general too much to ask for in practice. The only way that would
happen is if the true signal was indeed something that was perfectly representable in the basis that we had
decided to use for fitting. What we are going for with our DFT-based interpolation is a good general-purpose
approximation for signals that are smooth and not too wiggly over a finite domain of interest.

A further thing to notice is that by choosing to map the finite domain of interest to the unit circle, we are
indeed making another implicit choice. After all, a circle has no natural beginning and no natural end — it
is a loop. This means that the functions we are going to get are always going to be implicitly periodic. It
turns out that there are perfectly natural ways to eliminate that assumption. For example, we can put all our
sample points from 0 to π instead of from 0 to 2π , and just mirroring them on the other side of the unit circle.
All sequences are naturally periodic if you walk through them up and then down — you are guaranteed to
end up where you started. This goes by the name of the DCT and is something you’ll see more about in
123. There are similar natural ways to adapt to nonuniformly spaced samples, etc. Orthogonality gets lost
and the computations slow down, but it is possible to proceed.

6.2 The even m case
All that remains is the case of m even. Here, there is a slight twist because the DFT coefficients don’t
naturally come in complex conjugate pairs. As before, there is the special 0 coefficient α0 which is real
because the first column of the B matrix is real and we are assuming that the yi values we are interpolating
are real. But for the even m case, there is another special case of α m

2
. This is also real because ω

m
2

m =−1 and
hence the middle column~b m

2
of B consists entirely of alternating −1,+1s. Because of this, since the inverse

of B has 1
m
~b∗k for its k-th row, we know that α m

2
is always real if the yi values are all real.

For the rest of the coefficients, they come in complex conjugate pairs. So what we did for the odd m case
will work for interpolation. But what about the m

2 coefficient? What function should we summon forth
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here? x
m
2 isn’t the right choice on its own — it will be complex. For the same reason, x−

m
2 also isn’t the

right choice on its own — it too will be complex. But the average of two aliases is also an alias, so we can
use 1

2(x
m
2 + x−

m
2 ). Evaluated on x = e jθ this is 1

2(e
j m

2 θ + e− j m
2 θ ) = cos

(m
2 θ
)

which is definitely real.

Putting everything together, we get for our interpolation (when the original data was real):

h(e jθ ) = α0 +α m
2

1
2
(e j m

2 θ + e− j m
2 θ )+

m
2−1

∑
i=1

(
αie jiθ +αie jiθ

)
which is definitely real.

A final comment can be made on what should we do if the original samples~y were complex to begin with.
(This is not an even vs odd thing, but the even case is what brings it to mind more strongly.) The above
expressions continue to be valid interpolations as long as we replace αi with what it actually comes from:
αm−i. It was the realness of ~y that gave the complex conjugacy relationship between the pairs of αi,αm−i

coefficients. The fact that these are interpolations comes from the fact that~bk has many names, and we have
chosen to invoke one of them. That didn’t care about what~y was like. That said, when we have~y complex,
we need to ask where they are coming from and how we want to decide on the best strategy for interpolating
them. Sometimes the answer is as above, and sometimes the nature of the problem will want to have us use
a different strategy. You’ll learn more about that in 120 and 123. It turns out to be particularly relevant in
the context of making communication systems.

7 Other DFTs
The DFT is an amazingly versatile tool. Interpolation and global approximations of functions is just one of
its uses. The “Fourier style” of thinking turns out to be helpful in other ways as well.

As a result, there are actually multiple definitions that you will encounter in the literature and when using
codebases or libraries that exist. It is helpful to always think about the DFT as a coordinate transformation.
As we saw when we illustrated them, because of the interesting properties of exponentials and powers, the
kth DFT basis vector represents a counterclockwise path through the m-th roots of unity starting at 1 and
then moving by k roots at a time. So the 0th DFT basis vector just stays at 1. The 1st DFT basis vector goes
through the n roots of unity one at a time clockwise starting with 1. The 2nd DFT basis vector takes two
trips around the unit circle starting at 1 and moving two at a time. And so on.

There are several different ways to normalize the DFT basis vectors, each coming from different motivations.
Below is a table of three such normalizations in widespread use. They don’t have standardized names6, and
so we will give them names that we like.

Variant Normalizing Factor Notation entries

Polynomial DFT basis 1 ~bk bk[i] = e j 2πik
m

Orthonormal DFT basis 1√
m ~uk uk[i] = 1√

n e j 2πik
m

Traditional/Classic DFT basis 1
m

~dk dk[i] = 1
n e j 2πik

m

6To add to the confusion, inspired by certain discrete settings, some folks use the conjugate of the classic DFT with the basis
vectors effectively going clockwise to start. For example, without any attempt to tell it to do otherwise, Wolfram Alpha and
Mathematica default to this alternative. The moral is, you have to be careful and check to see if any software package is indeed
giving you what you are asking for.
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The table above defines the relevant matrices B= [~b0,~b1, · · · ,~bm−1] or U = [~u0,~u1, · · · ,~um−1] or D= [~d0, ~d1, · · · , ~dm−1]
and correspondingly result in relationships (e.g. B~F = ~f ) between the learned parameters ~F and the original
data ~f . They clearly all differ only by scaling7.

Their inverses are what we use to go from observations ~y to the corresponding DFT coefficients ~Y . These
are B−1 = 1

m B∗ for the polynomial-style DFT, U−1 =U∗ = 1√
m B∗ for the orthonormal DFT, and D−1 = B∗

for the classic/traditional DFT.

You will learn more about the traditional/classic DFT in 120/123, and see why it is defined the way that
it is. The reason has to do with eigenvalues and eigenvectors, and is intimately connected to Phasors and
Transfer functions. Essentially, the coefficients obtained using the classic DFT represent the eigenvalues of
a particular matrix, and they play the role of a Transfer function. You will see in 120/123 how you can take
limits to explicitly connect these two.

Contributors:

• Rahul Arya.

• Anant Sahai.

7FYI: Numpy given normalization “none” will compute the Traditional/Classic map and solve the equation D~F = ~f to return ~F .
If you give Numpy the normalization “ortho”, then it will compute the Orthonormal DFT basis version and solve U~F = ~f and return
~F . Nobody bothered to define a separate normalization for the Polynomial version because it turns out that it can be computed by
calling the inverse classic DFT on a “flipped” vector ~f . Can you see why? This has to do with the complex conjugacy relationships
between the columns of B. By appropriately “flipping” the vector, you can effectively multiply by the conjugate of B. Here, flipping
involves reversing the order of almost all the entries, but keeping the 0-th entry the same.

Anyway, since this is an EECS course and the FFT (Fast Fourier Transform) is literally considered one of the most important
algorithms of all time, we felt that it was important to connect to numpy here. The FFT itself is a topic for 170 and 120/123. It tells
us that we can compute the DFT coefficients far faster than having to do a full matrix multiplication.
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