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EECS 16B Designing Information Devices and Systems II
Spring 2021 Note 3B: Inductors and RLC Circuits

1 Inductors
Let’s introduce a new passive component, an inductor. This new component will help us design more
interesting circuits and introduce oscillations within our circuits.

1.1 Basics
IL(t)

L

+

−

VL(t)

Figure 1: Example Inductor Circuit

The voltage across the inductor is related to its current as follows:

VL(t) = L
dIL(t)

dt
. (1)

where L is the inductance of the inductor. The SI unit of inductance is Henry (H). Looking at eq. (1) we can
observe that an inductor behaves as a capacitor with the roles of current and voltage reversed.

Concept Check: The current across the inductor cannot change instantaneously. Why?

Solution: If our current changes instantaneously, then d
dt IL → ∞, and from eq. (1) the voltage across the

inductor VL→ ∞, which is not possible. Hence, our current cannot change instantaneously.

In steady state, when the current flowing through an inductor is constant, there is no voltage drop across the
inductor. This makes sense, since an inductor is essentially a spool of wire wrapped around a conductor.
Similarly, if the current through the inductor is changing, there will be a voltage drop across the inductor.
The energy stored in the inductor turns out to be EL = 1

2 LI2, but we won’t be using this very much in
EECS16B. We are only mentioning it here because it helps us interpret what is happening later.

1.2 Physics behind Inductors
(not in scope for EECS 16B, just for information)

Inductors store energy in a magnetic field. In the same way that a capacitor separates charge (Q) and
this leads to an electric field (~E), anytime current flows down a conductor, it creates a magnetic field (~B).
Likewise, the magnetic field can store energy. Their behavior can be described using Faraday’s Law of
Induction.
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The magnitude of magnetic field created by a straight wire is pretty small, so we usually use other geometries
if we want to create a useful inductances. A solenoid is a good example, where we wind a wire around a
conductor like a copper rod:

A
IS L

N turns

` L = N2µA
` [H]

Figure 2: The Inductance of a Solenoid: a wire coiled around something.

Note that the inductance (L) depends on geometry and a material property called magnetic permeability
(µ) of the solenoid core material. In the case of the solenoid in 2, the inductance depends on the number
of turns (N), the length of the solenoid (l) and the area (A) of the loops. Inductors are useful in many
applications such as wireless communications, chargers, DC-DC converters, key card locks, transformers in
the power grid, etc. But in many high speed applications, their presence might be undesirable as they create
delays in the time response of the circuit.

1.3 Equivalence Relations
Now that we have the basics, let’s derive the equivalence relations for series and parallel combinations of
inductors. We will find that these are similar to those of resistors. Why? Because the law governing an
inductor VL = L d

dt IL involves a proportionality constant L that multiplies a current-like quantity to give a
voltage. In a resistor, the resistance R multiplies current to give a voltage.

1.3.1 Series Equivalence

Itest(t)

L1

+

−

VL1(t)

L2

+

−

VL2(t)

Itest

Figure 3: Series Inductor Circuit

Let’s apply a dItest
dt through the two inductors, then

VL1(t)+VL2(t) =VL(t)
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where, VL(t) is the voltage across the two inductors. From VI relationship for inductors, we get

L1
dItest

dt
+L2

dItest

dt
=VL(t) (2)

(L1 +L2)
dItest

dt
=VL(t) (3)

Leq
dItest

dt
=VL(t) (4)

where, Leq = L1 +L2.

1.3.2 Parallel Equivalence

IL(t)

IL1(t)

L1

+

−

VL1(t)

IL2(t)

L2

+

−

VL2(t)−
+Vtest

Figure 4: Parallel Inductor Circuit

We apply at Vtest across the parallel combination. We have

VL1(t) =VL2(t) =Vtest(t)

L1
dIL1

dt
= L2

dIL2

dt
= Leq

dIL

dt
and from KCL, we have

IL(t) = IL1(t)+ IL2(t)

Differentiating with respect to time, and substituting from the above equality,

dIL

dt
=

dIL1

dt
+

dIL2

dt
(5)

dIL

dt
=

Leq

L1

dIL

dt
+

Leq

L2

dIL

dt
(6)

1
Leq

=
1
L1

+
1
L2

(7)
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2 LC Tank
In our two capacitor circuit example, we found that our eigenvalues were real. But, we could also encounter
a system whose eigenvalues are complex. In this section, we will explore a circuit, commonly known as an
LC tank, whose matrix will have purely imaginary eigenvalues.

In the following circuit, we have an inductor L= 10nH and capacitor C = 10pF in parallel. Let IL(0)= 50mA
and Vout(0) = 0V:

L

IL

C

+

−
Vout

Ic

Since the inductor and capacitor are in parallel:

VL =VC =Vout

KCL gives:

IL =−Ic =−C
dVout

dt
dVout

dt
=− 1

C
IL

VL =Vout = L
dIL

dt
dIL

dt
=

1
L

Vout

Putting it into matrix form, as before: [
d
dt Vout

d
dt IL

]
=

[
0 − 1

C
1
L 0

][
Vout
IL

]
(8)

Finding the eigenvalues:

det

[−λ − 1
C

1
L −λ

]= λ
2 +

1
LC

= 0 (9)

=⇒ λ1,2 = 0± j
1√
LC

(10)

Next, we can find the eigenvectors of the above matrix as v1 =

 j
√

L
C

1

 and v2 =

− j
√

L
C

1

. We can use

these vectors to transform our coordinates to one where the matrix becomes diagonal. More concretely,[
Vout
IL

]
=

 | |
v1 v2
| |

[Ṽout
ĨL

]
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As discussed before, once in this new coordinates, our system becomes uncoupled, and we can solve for Vout
and IL as follows: [

d
dt Ṽout

d
dt ĨL

]
=

[
j 1√

LC
0

0 − j 1√
LC

][
Ṽout
ĨL

]

=⇒ d
dt

Ṽout = j
1√
LC

Ṽout

d
dt

ĨL =− j
1√
LC

ĨL

∴ Ṽout = k̃1e
j√
LC

t

ĨL = k̃2e−
j√
LC

t

Next, we need to find initial conditions in this new coordinate system. Substituting the given values,[
Ṽout(0)
ĨL(0)

]
=

 j
√

L
C − j

√
L
C

1 1

−1[
Vout(0)
IL(0)

]

=
1

j20
√

10

[
1 j10

√
10

−1 j10
√

10

][
0

0.05

]

=

[
2.5×10−2

2.5×10−2

]
Hence, k̃1 = 2.5×10−2 and k̃2 = 2.5×10−2. Next, we can tranform back to our original coordinate system:[

Vout
IL

]
=

[
j10
√

10 − j10
√

10
1 1

][
2.5×10−2e j

√
10×109t

2.5×10−2e− j
√

10×109t

]

=

[
j0.25

√
10e j

√
10×109t − j0.25

√
10e− j

√
10×109t

2.5×10−2e j
√

10×109t +2.5×10−2e− j
√

10×109t

]

Concept Check: Write the above sum of exponentials as sine and cosine. Hint: Use the Euler form of sine
and cosine we encountered in the complex number note.

Based on the intuition we have gained above, let’s guess a solution with pure sines and cosines, as follows:

Vout(t) = c1 cos
(

1√
LC

t
)
+ c2 sin

(
1√
LC

t
)

(11)

Next, plugging in initial conditions to solve for the constants:

Vout(0) = 0 = c1

Ic(0) =−IL(0) =−50×10−3

dVout(0)
dt

=
1
C

Ic(0) =
−50×10−3

10−11 =
c2√

10−8×10−11

c1 = 0

=⇒ c2 =−
5√
10

=−0.5
√

10

=⇒ Vout(t) =−0.5
√

10sin
(√

10×109t
)
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Notice that the amplitude of Vout is constant.1

Concept Check: Follow the same steps above to find the current, IL(t). Hint: The current will also be of
the form in eq. (11), but with different constants.

Solution:

IL(t) = 50×10−3 cos
(√

10×109t
)

Figure 5: Voltage and Current response of LC Tank

Figure 5 plots the above solutions for the capacitor voltage and inductor current. This system is also called
an oscillator because the circuit produces a repetitive voltage waveform under the right initial conditions.

From the above plots, we can see that the current and voltage are 90◦ out of phase, i.e. when the current is at
its maximum or minimum, the voltage is at 0V, and vice versa. What does this mean for the energy stored
in these components? We know that, energy in the capacitor, EC = 1

2CV 2 = 1.25×10−11 sin2
(√

10×109t
)

and energy in the inductor, EL = 1.25×10−11 cos2
(√

10×109t
)

. Figure 6 plots the these energies. As you
can see, the total energy seems to be sloshing back and forth between the inductor and capacitor.

1And, in case the algebra is confusing, the c2√
10−8×10−11 part comes from evaluating the derivative of the output voltage at time

t = 0. That is, d
dt Vout(t) = c2 cos

(
1√
LC

t
)

, and we know the value for this at t = 0. Plugging in L,C, gives this equation.
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Figure 6: Energy stored in Inductor and Capacitor. Notice the sum is constant.

3 RLC Circuits and Higher Order Differential Equations
The LC tank we studied in the previous section was a very ideal case where we assumed there was no resistor
in the system. But this is rarely the case, and we will need to understand how adding this third component
will modify our differential equations.

To motivate our discussions, consider the following circuit, with component values Vs = 4V, C = 2fF,
R = 60kΩ, and L = 1µH. Before t = 0, switch S1 is on while S2 is off. At t = 0, both switches flip state (S1
turns off and S2 turns on):

−
+ Vs

t = 0

S1

t = 0S2

C

+ −
VC

i R

+ −VR

L

+ −VL

This is something that you will work out for yourself in the homework. The key is simply to follow the
steps marking anything with a derivative on it as a state variable, writing out the differential equations, and
solving the system.
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