Midterm 2

(!) This is a preview of the published version of the quiz

Started: Apr 15 at 10:38pm

Quiz Instructions

This midterm will be open notes, open Internet, and open-calculator; but you may not consult another person while taking the exam.

Question 1

A dynamical system model for an epidemic with total population $N=S+I+R$, where S is the number of susceptible individuals, I is the number of infected, and R is the number of recovered, is modeled by

$$
\begin{aligned}
\frac{d}{d t} S & =-\beta \frac{I S}{N} \\
\frac{d}{d t} I & =\beta \frac{I S}{N}-\gamma I \\
\frac{d}{d t} R & =\gamma I
\end{aligned}
$$

Here, we use real numbers since integer granularity is not required. Consider the situation before the onset of the epidemic, with $S=N, I=0$, and $R=0$. The linearized state-space model is given by

$$
\frac{d}{d t}\left[\begin{array}{c}
\tilde{s} \\
\tilde{i} \\
\tilde{r}
\end{array}\right]=A\left[\begin{array}{c}
\tilde{s} \\
\tilde{i} \\
\tilde{r}
\end{array}\right],
$$

where the lower case variables with tildes are the linearized variables for the model.
Then, the matrix A is given by:

$$
A=\left[\begin{array}{ccc}
-\beta & -\beta & 0 \\
\beta & \beta-\gamma & 0 \\
0 & \gamma & 0
\end{array}\right]
$$

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
0 & -\beta & 0 \\
0 & \gamma-\beta & 0 \\
0 & \gamma & 0
\end{array}\right] \\
A & =\left[\begin{array}{ccc}
0 & -\beta & 0 \\
0 & \beta-\gamma & 0 \\
0 & \gamma & 0
\end{array}\right] \\
A & =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
A & =\left[\begin{array}{ccc}
-\beta & -\beta & 0 \\
0 & \beta-\gamma & 0 \\
0 & \gamma & 0
\end{array}\right]
\end{aligned}
$$

Question 2

A system $\frac{d}{d t} \vec{x}=A \vec{x}+B \vec{u}$ has controllability matrix $\mathcal{C}=\left[\begin{array}{llll}B & A B & \ldots & A^{n-1} B\end{array}\right]$.
Suppose that $\vec{z}=T \vec{x}$, where T is an invertible matrix. What is the controllability matrix for the system resulting from this change of coordinates?

$T \mathcal{C}$

$$
T C T^{-1}
$$

$\mathcal{C} T^{-1}$
\mathcal{C}
$T^{-1} \mathcal{C}$

Given the matrix $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$,
Which of the following are true statements about the Singular Value Decomposition (SVD) of A ?

1. All eigenvalues λ_{i} of $A A^{\top}$ are identical to each other.
2. Non zero singular values are $\sigma_{1}=3, \sigma_{2}=2, \sigma_{3}=1$.
3. Removing the last row of A doesn't change the non-zero singular values.

1 and 2 only.

2 and 3 only.

1 and 3 only.

1 only.

1,2 and 3.

Question 4

Which of the following statements about the Singular Value Decomposition (SVD) is true when written in the form $A=\sigma_{1}{\overrightarrow{u_{1}}}_{\vec{v}_{1}}+\sigma_{2}{\overrightarrow{u_{2}}}_{\vec{v}_{2}}+\cdots$? Assume that all σ_{i}, the singular values, are non-zero.
$\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \ldots\right\}$ is an orthonormal basis for the column space of A.
The singular values, σ_{i}, are real numbers of arbitrary sign.
The SVD separates a rank r matrix A into a sum of $r-1$ rank 1 matrices.The SVD of a matrix A is unique.None of the others.

Question 5

The dynamics of an epidemic, with a fixed population N are sometimes modeled with a state-space model of the form:

$$
\begin{aligned}
\frac{d}{d t} S & =-\beta \frac{I S}{N} \\
\frac{d}{d t} I & =\beta \frac{I S}{N}-\gamma I \\
\frac{d}{d t} R & =\gamma I
\end{aligned}
$$

where S is the number of susceptible individuals, I is the number of infected individuals, R is the number of recovered individuals, and $N=S+I+R$ is the total population. Although numbers of individuals are integer valued, we use real numbers in this exercise since integer granularity is not needed. Positive constants β and γ parametrize the epidemic dynamics.

How many equilibrium points does the epidemic dynamics of the model above have?

- Infinitely many
1
2
0

Question 6

When the system $\frac{d}{d t} \vec{x}=A \vec{x}$ is discretized at a certain sampling period, the resulting discrete-time state space model is $\vec{x}_{d}(t+1)=A_{d} \vec{x}_{d}(t)$.

What is the state space model when $\frac{d}{d t} \vec{x}=2 A \vec{x}$ is discretized at the same sampling period?
$\vec{x}_{d}(t+1)=2 A_{d} \vec{x}_{d}(t)$
$\vec{x}_{d}(t+1)=A_{d}^{2} \vec{x}_{d}(t)$
$\vec{x}_{d}(t+1)=\left(A_{d}+2 I\right) \vec{x}_{d}(t)$
$\vec{x}_{d}(t+1)=\left(A_{d}^{2} / 2+I\right) \vec{x}_{d}(t)$
Not enough information to determine

Question 7

Suppose the following linear dynamical system is controllable:
$\frac{d}{d t} \vec{x}=\mathbf{A} \vec{x}+\vec{b}_{1} u$
Which additional conditions are necessary for the following system to be controllable?
$\frac{d}{d t} \vec{x}=\mathbf{A} \vec{x}+\mathbf{B} \vec{u}$
where $\mathbf{B}=\left[\begin{array}{ll}\vec{b}_{1} & \vec{b}_{2}\end{array}\right]$.

The system $\frac{d}{d t} \vec{x}=\mathbf{A} \vec{x}+\vec{b}_{2} u$ must also be controllable.
The system cannot be controllable under any conditions.None, the system is already controllable.A and \mathbf{B} have orthogonal columns.
\vec{b}_{1} and \vec{b}_{2} must be orthogonal.

Question 8

1 pts

Suppose we have a linear dynamical system $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)+B \vec{u}(t)$ where $\vec{x}(t) \in \mathbb{R}^{n}$ and $\vec{u}(t) \in \mathbb{R}^{m}$.

Which of the following are necessarily true:
I. $\vec{x}=0$ is an equilibrium point for $\vec{u}=0$.
II. For any given input \vec{u}, there must exist a unique equilibrium point \vec{x}^{*}.
III. Suppose $\left(\vec{x}^{*}, \vec{u}^{*}\right)$ is an equilibrium point, $\vec{x}(0)=\vec{x}^{*}$, and $\vec{u}(t)=\vec{u}^{*}$ for all $t \geq 0$. Then $\vec{x}(t)$ is constant for $t \geq 0$.
IV. If A is invertible, there exists an input for which there are no equilibrium points.
V. If \vec{x}_{1}^{*} and \vec{x}_{2}^{*} are equilibrium points for $\vec{u}=0, \vec{x}_{1}^{*}+\vec{x}_{2}^{*}$ is also an equilibrium point.I only.

○ II, III, IV

I, III, VI, II, III, IV
I, II, III, IV, V

Question 9

Consider the discrete time system

$$
\vec{x}(k+1)=A \vec{x}(k)+\vec{b} u(k)
$$

with $\vec{x}(\cdot) \in \mathbb{R}^{3}, A \in \mathbb{R}^{3 \times 3}$, and $\vec{b} \in \mathbb{R}^{3}$.
Suppose that the system is controllable from the origin $\vec{x}(0)=0$ in 10 steps. That is, one can design a control sequence $\{u(0), u(1), \ldots, u(9)\}$ to reach any target state $\vec{x}^{*}=\vec{x}(10)$ in 10 steps. Which of the following is true?

For any target state \vec{x}^{*}, one can find an initial condition $\vec{x}(0)$ and a two step input sequence $\{u(0), u(1)\}$ to reach \vec{x}^{*}.

None of the other answers is correct.

Any state \vec{x}^{*} can be also be reached with a shorter input sequence $\{u(0), u(1)\}$ in two steps.

The state \vec{x}^{*} cannot be reached from the origin in 9 steps with any possible sequence $\{u(0), u(1), \ldots, u(8)\}$.

The input sequence $\{u(0), u(1), \ldots, u(9)\}$ to reach \vec{x}^{*} is unique.

Question 10

How many non-zero singular values does the following matrix A have?
$A=\left[\begin{array}{lll}1 & 1 & 2 \\ 2 & 2 & 4 \\ 3 & 3 & 6 \\ 4 & 4 & 8 \\ 5 & 1 & 2\end{array}\right]$

- 1

54
3

Question 11

1 pts

Suppose we have the relation $\vec{y}=D \vec{p}+\vec{e}$, as seen from lecture. In order to determine $\overrightarrow{\hat{p}}$, the least squares estimate, which of the following assumptions were made?D is diagonal.
$D^{\top} D$ is invertible.
\vec{e} is orthogonal to \vec{y}.
None of the others assumptions.
D^{\top} is invertible.

Question 12

Consider the scalar system $x(t+1)=b u(t)+e(t)$, where, b is the only unknown parameter and $e(t)$ is a disturbance term. Suppose, we apply the input, $u(0)=u(1)=u(2)=u(3)=$ 1and observe the resulting state trajectory to obtain a least-squares estimate \hat{b} for b. Which of the following state trajectories would result in the estimate $\hat{b}=1$?
$x(1)=1.1, x(2)=0.9, x(3)=1.2, x(4)=1$
$x(1)=0.1, x(2)=0.9, x(3)=1.7, x(4)=1.2$
$x(1)=0.1, x(2)=1.9, x(3)=1, x(4)=0.9$
○ $x(1)=1.2, x(2)=0.9, x(3)=0.6, x(4)=1.0$
$x(1)=0.1, x(2)=1.1, x(3)=1.9, x(4)=0.9$

Question 13

Which of the following are true about the Singular Value Decomposition (SVD)?

1. If a square matrix Q is orthonormal $\left(Q Q^{\top}=I\right)$, then its singular values are all 1.
2. A matrix with rank r will have exactly r singular values greater than 0 .
3. Every real matrix has an SVD.

1 only.
2 and 3 only.

1 and 2 only.
1,2 , and 3.
1 and 3 only.

Question 14

Consider a linear system, $\frac{d}{d t} \vec{x}(t)=A \vec{x}(t)+B \vec{u}(t)$, where $\vec{x}(t) \in \mathbb{R}^{n}$ and $\vec{u}(t) \in \mathbb{R}^{m}$.

Which of the the following conditions can, on its own, determine whether the system is controllable or not?

I.	$m<n$
II.	$A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right], B=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
III.	$m=n$ and B is invertible
IV.	$A B=0$ and $m<n$
V	$\operatorname{rank}(A)=n$

II, III, and IV only
I, II, III, IV, and VI, III, and V onlyI, II, III, and IV onlyII and III only

Question 15

Consider the discrete time dynamical system

$$
y(k+1)=b_{1} u(k)+b_{2} u(k-1)+e(k),
$$

where $e(k)$ accounts for additive noise, and we get to measure the $y(\cdot)$ and the $u(\cdot)$ data sequences exactly. We set up an estimation scheme to estimate the unknown real parameters b_{1}, and b_{2} :

$$
\left[\begin{array}{cc}
u(1) & u(0) \\
u(2) & u(1) \\
\vdots & \vdots \\
u(N) & u(N-1)
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{c}
y(2) \\
y(3) \\
\vdots \\
y(N+1)
\end{array}\right]
$$

Suppose that $u(k)=\lambda^{k}$. For this input, what is the minimum number of steps, i.e. samples of $y(\cdot)$, needed to uniquely estimate the parameters b_{1} and b_{2} ?1
4

Cannot be uniquely estimated, no matter how many samples

Question 16

Consider the following dynamical system:
$\frac{d}{d t}\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]=\left[\begin{array}{c}x_{1}(t) x_{2}(t)+u(t) x_{1}^{2}(t) \\ \cos \left(\frac{\pi}{2} x_{1}(t)\right)\end{array}\right]$
For $u(t)=1$, consider the following equilibrium point $\vec{x}^{*}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
Let $\overrightarrow{\tilde{x}}(t)=\vec{x}(t)-\vec{x}^{*}$ and $\tilde{u}(t)=u(t)-1$. We wish to write a system as $\frac{d}{d t} \overrightarrow{\tilde{x}}(t)=A \overrightarrow{\tilde{x}}(t)+B \tilde{u}(t)$

Which of the following is a correct linearization:

$$
\left.\begin{array}{l}
A=\left[\begin{array}{cc}
1 & 1 \\
-\frac{\pi}{2} & 0
\end{array}\right], B=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
A=\left[\begin{array}{cc}
x_{2}(t) & x_{1}(t) \\
-\frac{\pi}{2} \sin \left(\frac{\pi}{2} x_{1}(t)\right) & 0
\end{array}\right], B=\left[\begin{array}{c}
x_{1}^{2}(t) \\
0
\end{array}\right] \\
A=\left[\begin{array}{cc}
x_{2}(t)+2 u(t) x_{1}(t) & x_{1}(t) \\
-\frac{\pi}{2} \sin \left(\frac{\pi}{2} x_{1}(t)\right) & 0
\end{array}\right], B=\left[\begin{array}{c}
x_{1}^{2}(t) \\
0
\end{array}\right] \\
A
\end{array}\right)=\left[\begin{array}{cc}
1 & -\frac{\pi}{2} \\
1 & 0
\end{array}\right], B=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \quad \begin{array}{ll}
A & =\left[\begin{array}{ll}
1 & 1 \\
0 & \frac{\pi}{2}
\end{array}\right], B=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{array}
$$

Which of the following is a valid SVD for $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$?

$$
\begin{aligned}
& \vec{u}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \vec{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], \sigma_{1}=1, \sigma_{2}=1 \\
& \vec{u}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \vec{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \sigma_{1}=1, \sigma_{2}=1 \\
& \vec{u}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \vec{v}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \sigma_{1}=1, \sigma_{2}=-1 \\
& \vec{u}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \vec{v}_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right], \sigma_{1}=0.5, \sigma_{2}=0.5 \\
& \vec{u}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right], \vec{v}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right], \sigma_{1}=1, \sigma_{2}=1
\end{aligned}
$$

Question 18

Consider the circuit below, where $u(t)$ is the input and $i_{1}(t)$ and $i_{2}(t)$ are the state variables:

Suppose, $R_{1}=1 \mathrm{~m} \Omega, L_{1}=1 \mathrm{mH}, L_{2}=2 \mathrm{mH}$. For which value of R_{2} is this system uncontrollable?
$\mathrm{R}_{2}=1 \mathrm{~m} \Omega$
$\mathrm{R}_{2}=0 \Omega$
$\mathrm{R}_{2}=2 \mathrm{~m} \Omega$
None. It is controllable for all values of R_{2}.
$\mathrm{R}_{2}=0.5 \mathrm{~m} \Omega$

Question 19

Let A be an $m \times n$ real matrix with SVD in standard outer product form
$A=\sigma_{1} \vec{u}_{1} \vec{v}_{1}^{\top}+\sigma_{2} \vec{u}_{2} \vec{v}_{2}^{\top}+\sigma_{3} \vec{u}_{3} \vec{v}_{3}^{\top}$ with $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}>0$.
Which of the following is NOT true:
$A^{\top} A \vec{v}_{2}=\sigma_{2}^{2} \vec{v}_{2}$
$n \geq 3$

$\operatorname{rank}\left(A^{\top}\right)=3$

$$
\vec{v}_{1} \vec{v}_{1}^{\top}=1
$$

$\left[\begin{array}{lll}\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}\end{array}\right]^{\top}\left[\begin{array}{lll}\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Question 20

Consider the system:

$$
\begin{aligned}
& \frac{d x(t)}{d t}=(a-b y(t)) x(t) \\
& \frac{d y(t)}{d t}=(c x(t)-d) y(t)
\end{aligned}
$$

where, $x(t)$ and $y(t)$ are non-negative state variables and a, b, c, and d are positive constants. Professor Arcak linearized this model around one of its equilibrium points (he won't tell you which) and found that the resulting matrix A has complex eigenvalues. What are these eigenvalues?
$\lambda_{1,2}= \pm j \sqrt{a d}$
$\lambda_{1,2}=-b d / c \pm j a c / b$
$\lambda_{1,2}=a \pm j d \sqrt{b / c}$
$\lambda_{1,2}=-d \pm j a$
$\lambda_{1,2}=-d \pm j a \sqrt{c / b}$

A linear dynamical system is given below:
$\frac{d}{d t} \vec{x}=\mathbf{A} \vec{x}+\mathbf{B} \vec{u}$
The input \vec{u} is a constant. What property of the matrix Ais required so that the system has exactly two distinct equilibrium points?

Always possible
Not possible
$\mathbf{B} \vec{u}$ is in the column space of \mathbf{A}
The system is controllable

A is not invertible

Question 22

An invertible $n \times n$ matrix A has n distinct non-zero singular values. How many singular value decompositions $A=U \Sigma V^{\top}$ does A have?
2^{n-1}
n^{2}
$n!$
2^{n}
Not enough information to determine

Question 23

1 pts

Which of the following could be a non-zero singular value for matrix B below?
$B=\left[\begin{array}{lllll}1 & 5 & 1 & 1 & 2 \\ 2 & 7 & 2 & 9 & 4 \\ 3 & 3 & 3 & 4 & 6\end{array}\right]$

$1.01+2.14 j$

$-1.05$1.01-2.14j
-100
4.04

A discrete-time system is modeled by the following equation: $x(t+1)=a x(t)+b u(t)+e(t)$, where $e(t)$ is the system disturbance. The inputs and outputs at different time steps are :
$x(0)=1, x(1)=2, x(2)=1, x(3)=-2, u(0)=1, u(1)=0, u(2)=1$. What are the least-squares estimates of the parameters a and b ?
$a=\frac{1}{2}$ and $b=1$
$a=\frac{1}{2}$ and $b=-\frac{1}{2}$
$a=1$ and $b=-\frac{1}{2}$$a=1$ and $b=1$$a=1$ and $b=-1$

Consider the continuous-time system

$$
\begin{aligned}
& \frac{d x_{1}(t)}{d t}=x_{2}(t) \\
& \frac{d x_{2}(t)}{d t}=u(t)
\end{aligned}
$$

where $u(t)$ is the input. Professor Sanders discretized this model with a sampling period T and obtained,
$\overrightarrow{x_{d}}(k+1)=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \overrightarrow{x_{d}}(k)+\left[\begin{array}{c}0.5 \\ 1\end{array}\right] u_{d}(k)$.
What is the sampling period, T Professor Sanders used?
$T=0.5$
$T=1$
$\mathrm{T}=1 / \sqrt{2}$
$T=0.1$
$T=0.2$

