1. Current, Power, and Energy for a Capacitance (Hambley Example 3.3)

Suppose that the voltage waveform shown in Figure 1 is applied to a $10-\mu \mathrm{F}$ capacitance.

Figure 1: Plot of $v(t)$

Find and plot the current, the power delivered, and the energy stored for time between 0 and 5 s .

2. Determining Voltage for a Capacitance Given Current (Hambley Example 3.2)

After t_{0} the current in a $0.1 \mu \mathrm{~F}$ capacitor is given by

$$
\begin{equation*}
i(t)=0.5 \sin 10^{4} t \tag{1}
\end{equation*}
$$

(The argument of the sin function is in radians.) The initial charge on the capacitor is $q(0)=0$.

Figure 2: Example Circuit

Plot $i(t), q(t)$, and $v(t)$ to scale versus time.
3. Analyzing an RC Circuit with a Sinusoidal Source (Adapted from Hambley Example 4.4)

Assume you are given the following circuit, where the capacitor is initially charged so that $v_{C}(t)=$ 1 V .

Figure 3
(a) Set up a differential equation for the voltage $v_{C}(t)$ across the capacitor in the form:

$$
\begin{equation*}
\frac{\mathrm{d} v(t)}{\mathrm{d} t}+a v(t)=b(t) \tag{2}
\end{equation*}
$$

(b) What is the initial condition of $v(t)$? In other words, what is $v(0)$?
(c) Solve for the voltage $v(t)$ through the circuit. Also, identify the transient response (homogeneous solution) and the forced response (particular solution) of $v(t)$. You may directly use the fact that the solution to a differential equation in the same form as Equation 2 is:

$$
\begin{equation*}
v(t)=A \mathrm{e}^{-a t}+\mathrm{e}^{-a t} \int \mathrm{e}^{a t^{\prime}} b\left(t^{\prime}\right) \mathrm{d} t^{\prime} \tag{3}
\end{equation*}
$$

(HINT: The following integral might be useful:

$$
\begin{equation*}
\int e^{a t} \sin (b t)=\frac{1}{b^{2}+a^{2}} \mathrm{e}^{a t}(b \sin (b t)-a \cos (b t)) \tag{4}
\end{equation*}
$$

)
(d) (OPTIONAL) Solve for the current $i(t)$ through the circuit.

