1. NMOS Logic Inverter

(a) We have an NMOS logic implementation of an inverter shown below. The circuit has a voltage input $V_{in}(t) = t$, $t \ge 0$, $(V_{in}(t) = 0 \text{ V for } t \le 0)$ seen below.

Figure 1: Circuit figure and input signal.

For the transistor models below, define the threshold voltage as $V_{tn} = 2$ V. Match each NMOS transistor model, plugged into the NMOS inverter circuit, with its corresponding V_{out} plot on the next page. (Note: All capacitors are fully discharged at t = 0.)

(HINT: You can use the below graphs to evaluate V_{GS} for Models III and IV. We recommend using a scratch page to draw out the NMOS Inverter circuit with the various transistor models plugged in.)

2. An RC Circuit with a Dependent Source

Consider the following circuit ($V_{out}(0) = 0$):

Figure 5

(a) Find the differential equation for *V*_{out}.

(b) Find the time constant τ of the circuit.

(c) **Draw a sketch of** $V_{out}(t)$ **for** t > 0. Make sure to include the initial value, asymptotic value, and the approximate value at the time constant (all in terms of the given variables). (*HINT: You can do this without solving the differential equation.*)

Contributors:

- Nikhil Jain.
- Chancharik Mitra.