1. Introduction to Inductors

An inductor is a circuit element analogous to a capacitor; its voltage is proportional to the derivative of the current across it. That is:

$$
\begin{equation*}
V_{L}(t)=L \frac{\mathrm{~d} I_{L}(t)}{\mathrm{d} t} \tag{1}
\end{equation*}
$$

When first studying capacitors, we analyzed a circuit where a current source was directly attached to a capacitor. In Figure 1, we form the counterpart circuit for an inductor:

Figure 1: Inductor in series with a voltage source.
(a) What is the current through an inductor as a function of time? If the inductance is $L=3 \mathrm{H}$, what is the current at $t=6 \mathrm{~s}$? Assume that the voltage source turns from 0 V to 5 V at time $t=0 \mathrm{~s}$, and there's no current flowing in the circuit before the voltage source turns on, i.e $I_{L}(0)=0 \mathrm{~A}$.
(b) Now, we add some resistance in series with the inductor, as in Figure 2.

Figure 2: Inductor in series with a voltage source.

Solve for the current $I_{L}(t)$ and voltage $V_{L}(t)$ in the circuit over time, in terms of R, L, V_{S}, t. Note that $I_{L}(0)=0 \mathrm{~A}$. Try to solve this equation by inspection. Otherwise, you can use the following integral for the particular solution (with the proper values and functions):

$$
\mathrm{e}^{-s t} \int \mathrm{e}^{s t} b(t) d t
$$

(c) Suppose $R=500 \Omega, L=1 \mathrm{mH}, V_{S}=5 \mathrm{~V}$. Plot the current through and voltage across the inductor $\left(I_{L}(t), V_{L}(t)\right.$), as these quantities evolve over time.

2. RL Circuit Solution Methods

Consider the following circuit:

Figure 3

Before time $t=0$, the circuit reaches a steady state. At time $t=0$, the switch is closed. Our goal is to find the differential equation for the current through the inductor $\left(i_{L}(t)\right)$. One method to approach this problem is to simply use Node Voltage Analysis (NVA). To start, we would define the node voltages in our circuit (including a ground node).

Figure 4

Then, we can set up a system of equations using KCL/KVL to find our desired differential equation. First, let's perform KCL on the node with defined voltage V_{1}.

$$
\begin{aligned}
i_{1} & =i_{2}+i_{3} \\
\frac{V_{s}-V_{1}}{R_{1}} & =\frac{V_{1}-0}{R_{2}}+\frac{V_{1}-V_{2}}{R_{3}} \\
\frac{3-V_{1}}{30} & =\frac{V_{1}-0}{30}+\frac{V_{1}-V_{2}}{30} \\
V_{1} & =1+\frac{V_{2}}{3}
\end{aligned}
$$

Now, let's perform KCL on the node with the defined voltage V_{2}.
Note that $V_{2}-0=V_{2}$ is the voltage across the inductor so by the inductor I-V relationship, $V_{2}=$ $L \frac{\mathrm{~d} i_{L}}{\mathrm{~d} t}=3 \frac{\mathrm{~d} i_{L}}{\mathrm{~d} t}$.

$$
i_{3}=i_{L}
$$

$$
\begin{aligned}
\frac{V_{1}-V_{2}}{R_{3}} & =i_{L} \\
\frac{V_{1}-V_{2}}{30} & =i_{L} \\
\frac{V_{1}}{30} & =\frac{V_{2}}{30}+i_{L} \\
\frac{1}{30}\left(1+\frac{V_{2}}{3}\right) & =\frac{V_{2}}{30}+i_{L} \\
\frac{1}{45} V_{2}+i_{L} & =\frac{1}{30} \\
\frac{1}{45}\left(3 \frac{\mathrm{~d} i_{L}}{\mathrm{~d} t}\right)+i_{L} & =\frac{1}{30} \\
\frac{\mathrm{~d} i_{L}}{\mathrm{~d} t}+15 i_{L} & =\frac{1}{2}
\end{aligned}
$$

Thus, we have found the differential equation! However, this method required solving a system of equations; is there another way?
(a) Another way to approach the problem is to use equivalence. Simplify the voltage source and resistor network into a voltage source and resistor using Thevenin equivalence. Then, reconnect the inductor and find the differential equation for $i_{L}(t)$.
For reference, here is the circuit that we want to simplify using Thevenin equivalence:

Figure 5
(HINT: Your final differential equation should be the same as the one from the problem introduction.)
(b) Now, let's start solving the differential equation. First, find the initial condition $i_{L}(0)$ for our system. Remember that the current through the inductor cannot change instantaneously (since this would correspond to infinite voltage through the inductor I-V relationship) so $i_{L}(0)$ will be the same as the steady state value from $t<0$.
(HINT: If there is no voltage/current sources connected to this system, can there be any nonzero currents / voltage differences in the system during steady-state?)
(c) (OPTIONAL) Now that we have our differential equation and initial condition, we can now solve for the current $i_{L}(t)$ as a function of time. Solve the system for $i_{L}(t)$. If you can, try to solve this by inspection. Otherwise, you can use the following integral to find the particular solution (remember to use the values/functions that correspond to this specific differential equation):

$$
\mathrm{e}^{-s t} \int \mathrm{e}^{s t} b(t) d t
$$

Contributors:

- Anish Muthali.
- Neelesh Ramachandran.
- Kumar Krishna Agrawal.
- Nikhil Jain.

