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Discussion 7A

The following notes are useful for this discussion: Note 9.

1. Translating System of Differential Equations from Continuous Time to Discrete Time

Oftentimes, we wish to apply controls model on a computer. However, modeling a continuous time
system on a computer is a nontrivial problem. Hence, we turn to discretizing our controls problem.
That is, we define a discretized state ~xd[i] and a discretized input ~ud[i] that we “sample” every D
seconds.

(a) Consider the scalar system below:

dx(t)
dt

= lx(t) + bu(t). (1)

where x(t) is our state and u(t) is our control input. Let l 6= 0 be an arbitrary constant. Further
suppose that our input u(t) is piecewise constant, and that x(t) is differentiable everywhere (and
thus, continuous everywhere). That is, we define an interval t 2 [iD, (i + 1)D) such that u(t) is
constant over this interval. Mathematically, we write this as

u(t) = u(iD) = ud[i] if t 2 [iD, (i + 1)D). (2)

The now-discretized input ud[i] is the same as the original input where we only “observe” a
change in u(t) every D seconds. Similarly, for x(t),

x(t) = x(iD) = xd[i] (3)

Let’s revisit the solution for eq. (1), when we’re given the initial conditions at t0, i.e we know the
value of x(t0) and want to solve for x(t) at any time t � t0:

x(t) = el(t�t0)x(t0) + b

Z
t

t0
u(q)el(t�q) dq (4)

Given that we start at t = iD, where x(t) = xd[i] is known, and satisfy eq. (1), where do we end
up at xd[i + 1]? (HINT): Think about the initial condition here. Where does our solution “start”?
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(b) Suppose we now have a continuous-time system of differential equations, that forms a vector
differential equation. We express this with an input in vector form:

d~x(t)
dt

= A~x(t) +~bu(t) (5)

where ~x(t) is n-dimensional. Suppose further that the matrix A has distinct and non-zero eigen-
values l1, l2, . . . , ln. with corresponding eigenvectors ~v1,~v2, . . . ,~vn. We collect the eigenvectors
together and form the matrix V = [~v1,~v2, . . . ,~vn].

We now wish to find a matrix Ad and a vector~bd such that

~xd[i + 1] = Ad~xd[i] +~bdud[i] (6)

where ~xd[i] = ~x(iD).

Firstly, define terms

eLD =

2

666664

el1D 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . elnD

3

777775
(7)

L�1 =

2

666664

1
l1

0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . 1

ln

3

777775
(8)

~eud[i] = V
�1~bud[i] (9)

Note that the term eLD is just a label for our intents and purposes — this is not the same as
applying ex to every element in the matrix L.

Complete the following steps to derive a discretized system:

i. Diagonalize the continuous time system using a change of variables (change of basis) to
achieve a new system for ~y(t).

ii. Solve the diagonalized system. Remember that we only want a solution over the interval
t 2 [iD, (i + 1)D). Use the value at t = iD as your initial condition.

iii. Discretize the diagonalized system to obtain ~yd[i]. Show that

~yd[i + 1] =

2

666664

el1D 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . elnD

3

777775

| {z }
eLD

~yd[i] +

2

6666664

el1D�1
l1

0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . elnD�1

ln

3

7777775

~eud[i] (10)

Then, show that the matrix

2

6666664

el1D�1
l1

0 . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . elnD�1

ln

3

7777775
can be compactly written as L�1�eLD � I

�
.
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iv. Undo the change of variables on the discretized diagonal system to get the discretized
solution of the original system.
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(c) Consider the discrete-time system

~xd[i + 1] = Ad~xd[i] +~bdud[i] (11)

Suppose that ~xd[0] = ~x0. Unroll the implicit recursion and show that the solution follows the
form in eq. (12).

~xd[i] = A
i

d
~xd[0] +

 
i�1

Â
j=0

ud[j]A
i�1�j

d

!
~bd (12)

You may want to verify that this guess works by checking the form of ~xd[i + 1]. You don’t need
to worry about what Ad and~bd actually are in terms of the original parameters.

(Hint: If we have a scalar difference equation, how would you solve the recurrence? Try writing ~xd[i] in

terms of ~xd[0] for i = 1, 2, 3 and look for a pattern.)
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