

The following notes are useful for this discussion: Note 9.

1. Translating System of Differential Equations from Continuous Time to Discrete Time

Oftentimes, we wish to apply controls model on a computer. However, modeling a continuous time system on a computer is a nontrivial problem. Hence, we turn to discretizing our controls problem. That is, we define a discretized state $\vec{x}_{d}[i]$ and a discretized input $\vec{u}_{d}[i]$ that we "sample" every Δ seconds.
(a) Consider the scalar system below:

$$
\begin{equation*}
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=\lambda x(t)+b u(t) \tag{1}
\end{equation*}
$$

where $x(t)$ is our state and $u(t)$ is our control input. Let $\lambda \neq 0$ be an arbitrary constant. Further suppose that our input $u(t)$ is piecewise constant, and that $x(t)$ is differentiable everywhere (and thus, continuous everywhere). That is, we define an interval $t \in[i \Delta,(i+1) \Delta)$ such that $u(t)$ is constant over this interval. Mathematically, we write this as

$$
\begin{equation*}
u(t)=u(i \Delta)=u_{d}[i] \text { if } t \in[i \Delta,(i+1) \Delta) \tag{2}
\end{equation*}
$$

The now-discretized input $u_{d}[i]$ is the same as the original input where we only "observe" a change in $u(t)$ every Δ seconds. Similarly, for $x(t)$,

$$
\begin{equation*}
x(t)=x(i \Delta)=x_{d}[i] \tag{3}
\end{equation*}
$$

Let's revisit the solution for eq. (1), when we're given the initial conditions at t_{0}, i.e we know the value of $x\left(t_{0}\right)$ and want to solve for $x(t)$ at any time $t \geq t_{0}$:

$$
\begin{equation*}
x(t)=\mathrm{e}^{\lambda\left(t-t_{0}\right)} x\left(t_{0}\right)+b \int_{t_{0}}^{t} u(\theta) \mathrm{e}^{\lambda(t-\theta)} \mathrm{d} \theta \tag{4}
\end{equation*}
$$

Given that we start at $t=i \Delta$, where $x(t)=x_{d}[i]$ is known, and satisfy eq. (1), where do we end up at $x_{d}[i+1]$? (HINT): Think about the initial condition here. Where does our solution "start"?

$$
t \in[i \Delta,(i+i) s)
$$

start $t_{0}=$ is

$$
\begin{aligned}
& x\left(t_{0}\right)=x_{d}(i) \text { is known } \\
& u(t)=u_{d}(i)
\end{aligned}
$$

where to use end $u p$ at $x_{d}[i+1]=x((i+1) \cdot \Delta)=x(i \cdot \Delta+\Delta)=x\left(t_{0}+1\right)$

$$
\begin{aligned}
& x d(i)=x(i \cdot \Delta) \quad x d(i+1) \\
& \xrightarrow[t_{0}]{ }{ }_{t_{0}+\Delta}{ }_{t} \\
& x(t)=e^{\lambda\left(t-t_{0}\right)} x\left(t_{0}\right)+b \underbrace{\int_{t_{0}}^{t} u(\theta) e^{\lambda(t+\theta)} d \theta}_{b t_{t_{0}}^{t} u(\theta) e^{\lambda t} e^{-\lambda \theta} d \theta} \\
& x(t)=e^{\lambda\left(t-t_{0}\right)} x\left(t_{0}\right)+b e^{\lambda} \int_{t_{0}}^{t} u(\theta) e^{-\lambda \theta} d \theta \\
& x a[i+1]=x((i+1) \cdot \Delta) \\
& =x(i \cdot \Delta+\Delta) \\
& =x\left(t_{0}+\Delta\right) \\
& x\left(t_{0}+\Delta\right)=e^{\lambda\left((t+\Delta)-t_{0}\right)} x\left(t_{0}\right)+b e^{\lambda\left(t_{t}+\Delta\right)} \int_{t .}^{t_{0}+\Delta} u(\theta) e^{-\lambda t} d \theta \\
& \text { over } t \in[i \Delta,(i+1) \Delta) \\
& u(t)=u_{d}[i] \\
& x\left(t_{0}+\Delta\right)=e^{\lambda\left((t+\Delta)-t_{0}\right)} x\left(t_{0}\right)+b e^{\lambda\left(t_{0}+\Delta\right)} \int_{t_{0}}^{t_{0}+\Delta} u d[i) e^{-\lambda t} d \theta
\end{aligned}
$$

$$
\begin{aligned}
& x\left(t_{0}+\Delta\right)=e^{\lambda\left(\left(t_{0}+\Delta\right)-t_{0}\right)} x\left(t_{0}\right)+b e^{\lambda\left(t_{0}+\Delta\right)} \int_{t_{0}}^{t_{0}+\Delta} u d[i] e^{-\lambda t} d \theta \\
& \begin{aligned}
x\left(t_{0}+\Delta\right)=e^{\lambda \Delta} x\left(t_{0}\right)+b e^{\lambda\left(t_{0}+s\right)} u_{d}(i) & \underbrace{\int_{-t_{0}}^{t_{0} \Delta \Delta} e^{-\lambda \theta} d \theta}\left[\frac{1}{-\lambda} e^{-\lambda \theta}\right]_{t_{0}}^{t_{0}+\Delta}
\end{aligned} \\
& -\frac{1}{x}\left[e^{-x_{0}}\right]_{t_{0}}^{t_{0}+\Delta} \\
& \frac{1}{\lambda}\left[e^{-\lambda \theta}\right]_{t_{0}+\Delta}^{t_{0}} \\
& \frac{1}{\lambda}\left[e^{-\lambda t_{0}}-e^{-\lambda(t+0)}\right] \\
& x\left(t_{0}+\Delta\right)=e^{\lambda \Delta} x\left(t_{0}\right)+b e^{\lambda\left(-t_{0}+\Delta\right)} u_{d}(i) \cdot \frac{1}{\lambda}\left[e^{\lambda t_{0}}-e^{-\lambda\left(t_{0}+\Delta\right)}\right] \\
& +\frac{b u_{d}[i]}{\lambda}\left[e^{\lambda \Delta}-1\right] \\
& e^{\lambda\left(t_{0}+\Delta\right)} e^{-\lambda t_{0}}=e^{\left(\lambda t_{0}+\lambda \Delta\right)-H_{0}}=e^{\lambda \Delta} \\
& e^{\lambda\left(f_{0}+0\right)} e^{-\lambda\left(t_{0}+s\right)}=e^{0}=1
\end{aligned}
$$

$$
\begin{aligned}
& x\left(t_{0}+\Delta\right)=e^{\lambda \Delta} x\left(t_{0}\right)+b e^{\lambda\left(t_{0}+s\right)} u_{d}\left(i_{0}\right) \cdot \frac{1}{\lambda}\left[e^{-\lambda t_{0}}-e^{-\lambda\left(t_{0}+\Delta\right)}\right] \\
& +\frac{b u_{d}(i]}{\lambda}\left[e^{\lambda \Delta}-1\right] \\
& e^{\lambda\left(t_{0}+\theta\right)} e^{-\lambda t_{0}}=e^{\left(\lambda t_{0}+\lambda_{\Delta}\right)-H_{0}}=e^{\lambda \Delta} \\
& e^{\lambda\left(t_{0}+0\right)} e^{-\lambda\left(t_{0}+3\right)}=e^{0}=1 \\
& x\left(x(t+\Delta)=e^{x \Delta} x^{x d(t i)}+b u_{d}(i)\left[\frac{\left.e^{\lambda t}-1\right]}{\lambda}\right]\right. \\
& x_{d}[i+1], x_{d}[i] \\
& x d(i+1)=x(i+1) s)=x(i \Delta+s)=x(\text { t.s }) \\
& x_{d}(i)=x(i \cdot s)=x\left(t_{0}\right) \\
& x_{d}(i+1)=e^{\lambda} x_{a}(i)+\operatorname{bual}^{(i)}\left[\frac{e^{x}-1}{\lambda}\right] \\
& x a(i+1) \text { ? } \\
& \xrightarrow[\substack{x d(i) \\
t_{0} \\
i s}]{\substack{x\left(t_{0}\right) j \\
(i+1) \Delta}} \\
& \text { * discretizaton * }
\end{aligned}
$$

(b) Suppose we now have a continuous-time system of differential equations, that forms a vector differential equation. We express this with an input in vector form:

$$
\begin{equation*}
\frac{\mathrm{d} \vec{x}(t)}{\mathrm{d} t}=A \vec{x}(t)+\vec{b} u(t) \tag{5}
\end{equation*}
$$

where $\vec{x}(t)$ is n-dimensional. Suppose further that the matrix A has distinct and non-zero eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. with corresponding eigenvectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$. We collect the eigenvectors together and form the matrix $V=\left[\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right]$.
We now wish to find a matrix A_{d} and a vector \vec{b}_{d} such that

$$
\begin{equation*}
\vec{x}_{d}[i+1]=A_{d} \vec{x}_{d}[i]+\vec{b}_{d} u_{d}[i] \tag{6}
\end{equation*}
$$

where $\vec{x}_{d}[i]=\vec{x}(i \Delta)$.
Firstly, define terms

$$
\begin{align*}
& \mathrm{e}^{\Lambda \Delta}=\left[\begin{array}{cccc}
\mathrm{e}^{\lambda_{1} \Delta} & 0 & \ldots & 0 \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & \ldots & \mathrm{e}^{\lambda_{n} \Delta}
\end{array}\right] \tag{7}\\
& \Lambda^{-1}=\left[\begin{array}{cccc}
\frac{1}{\lambda_{1}} & 0 & \ldots & 0 \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & \ldots & \frac{1}{\lambda_{n}}
\end{array}\right] \tag{8}\\
& \overrightarrow{\widetilde{u}}_{d}[i]=V^{-1} \vec{b} u_{d}[i] \tag{9}
\end{align*}
$$

Note that the term $\mathrm{e}^{\Lambda \Delta}$ is just a label for our intents and purposes - this is not the same as applying e^{x} to every element in the matrix Λ.
Complete the following steps to derive a discretized system:
i. Diagonalize the continuous time system using a change of variables (change of basis) to achieve a new system for $\vec{y}(t)$.
ii. Solve the diagonalized system. Remember that we only want a solution over the interval $t \in[i \Delta,(i+1) \Delta)$. Use the value at $t=i \Delta$ as your initial condition.
iii. Discretize the diagonalized system to obtain $\vec{y}_{d}[i]$. Show that

$$
\vec{y}_{d}[i+1]=\underbrace{\left[\begin{array}{cccc}
\mathrm{e}^{\lambda_{1} \Delta} & 0 & \ldots & 0 \tag{10}\\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & \ldots & \mathrm{e}^{\lambda_{n} \Delta}
\end{array}\right]}_{\mathrm{e}^{\Lambda \Delta}} \vec{y}_{d}[i]+\left[\begin{array}{cccc}
\frac{\mathrm{e}^{\lambda_{1} \Delta}-1}{\lambda_{1}} & 0 & \ldots & 0 \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & \ldots & \frac{\mathrm{e}^{\lambda_{n} \Delta-1}}{\lambda_{n}}
\end{array}\right] \overrightarrow{\mathrm{u}}_{d}[i]
$$

Then, show that the matrix $\left[\begin{array}{cccc}\frac{\mathrm{e}^{\lambda_{1} \Delta}-1}{\lambda_{1}} & 0 & \ldots & 0 \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \ldots & \ldots & \frac{\mathrm{e}^{\lambda_{n} \Delta}-1}{\lambda_{n}}\end{array}\right]$ can be compactly written as $\Lambda^{-1}\left(\mathrm{e}^{\Lambda \Delta}-I\right)$.

$$
\begin{aligned}
& \frac{d x}{d t}(t)=A x(t)+b u(t) \\
& x=v y \\
& \frac{d}{d t} v y=A v_{y}+b u c t \\
& v y_{i+y}=A v_{y}+b u(t) \\
& \frac{d}{d t} y=\underbrace{v^{-1} A v y}_{\Lambda}+v^{-1} b u(f) \\
& \frac{d y}{d t}=1 y+\underbrace{v-g_{n}(t)} \quad \begin{array}{l}
\text { orly care } \\
\text { about } t t
\end{array} \\
& \text { about } t \in[\text { is, }(i+1) s) \\
& \text { uni] assume } u(t)=u+(i) \quad \forall t \in[i o,(i) / 18) \\
& \frac{d y}{d t}=\lambda y+\tilde{u}_{d}(i) \\
& \frac{d}{d t}\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
\ddots & 0 \\
0 & & \\
& & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]+\left[\begin{array}{c}
\tilde{u}_{1}(i) \\
\vdots \\
\tilde{a}_{n}(i)
\end{array}\right] \\
& \frac{d}{d t} y_{j}=x_{j} y_{j}+\tilde{u}_{d_{j}}[i] \\
& \text { SLEEPY }
\end{aligned}
$$

only cane about $t \in[i 0,(i+1) s) \quad$ links. ecus 16 .org/nima-djs we know y_{j} (is) assume $u \tilde{x}_{j}(i)$ is content ave this interval

$$
\begin{aligned}
& y_{d_{j}}(i+1)=e^{\lambda_{j} \Delta} y_{d_{j}}[i]+\frac{e^{\lambda_{j} \Delta}-1}{\lambda_{j}} \tilde{d}_{d_{j}}(i) \\
& y_{d} \longrightarrow x_{d} \quad x_{d}[i+1)=v_{y_{d}}[i+1]
\end{aligned}
$$

$$
\begin{aligned}
& \text { VDE } \longrightarrow \text { dag.inalisation. }
\end{aligned}
$$

$$
\begin{aligned}
& \vec{x}(t)
\end{aligned}
$$

iv. Undo the change of variables on the discretized diagonal system to get the discretized solution of the original system.
(c) Consider the discrete-time system

$$
\begin{equation*}
\vec{x}_{d}[i+1]=A_{d} \vec{x}_{d}[i]+\vec{b}_{d} u_{d}[i] \tag{11}
\end{equation*}
$$

Suppose that $\vec{x}_{d}[0]=\vec{x}_{0}$. Unroll the implicit recursion and show that the solution follows the form in eq. (12).

$$
\begin{equation*}
\vec{x}_{d}[i]=A_{d}^{i} \vec{x}_{d}[0]+\left(\sum_{j=0}^{i-1} u_{d}[j] A_{d}^{i-1-j}\right) \vec{b}_{d} \tag{12}
\end{equation*}
$$

You may want to verify that this guess works by checking the form of $\vec{x}_{d}[i+1]$. You don't need to worry about what A_{d} and \vec{b}_{d} actually are in terms of the original parameters.
(Hint: If we have a scalar difference equation, how would you solve the recurrence? Try writing $\vec{x}_{d}[i]$ in terms of $\vec{x}_{d}[0]$ for $i=1,2,3$ and look for a pattern.)

Contributors:

- Anish Muthali.
- Neelesh Ramachandran.
- Druv Pai.
- Anant Sahai.
- Nikhil Shinde.
- Sanjit Batra.
- Aditya Arun.
- Kuan-Yun Lee.
- Kumar Krishna Agrawal.

