Noise

$$
\begin{aligned}
& 4.99 v \\
& 4.55 T v \\
& 5.01 v
\end{aligned}
$$

1. System Identification by Means of Least Squares

(a) Consider the scalar discrete-time system

$$
\begin{equation*}
x[i+1]=a x[i]+b u[i]+w[i] \tag{1}
\end{equation*}
$$

Where the scalar state at timestep i is $x[i]$, the input applied at timestep i is $u[i]$ and $w[i]$ represents some (small) external disturbance that also participated at timestep i (which we cannot predict or control, it's a purely random disturbance).

Assume that you have measurements for the states $x[i]$ from $i=0$ to ℓ and also measurements for the controls $u[i]$ from $i=0$ to $\ell-1$. Further assume $\ell \geq 2$.

Show that we can set up a linear system as in eq. (2) to find constants a and b. How do we solve this system?

$$
\underbrace{\left[\begin{array}{c}
x[1] \tag{2}\\
x[2] \\
\vdots \\
x[\ell]
\end{array}\right]}_{\vec{s}} \approx \underbrace{\left[\begin{array}{cc}
x[0] & u[0] \\
x[1] & u[1] \\
\vdots & \vdots \\
x[\ell-1] & u[\ell-1]
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{c}
a \\
b
\end{array}\right]}_{\tilde{p}}
$$

$$
\begin{array}{lll}
(x[0], u[0)) & \longrightarrow x[1] \\
(x[1], u[1]) & \longrightarrow x[2] & a \times(0)+b u(0)=x[1] \\
\vdots \\
\vdots & a \times[1]+b u[1]=x[2] \\
(x[l-1], u[l-1]) \longrightarrow x[l] & a \times(l-1)+b u[l-1]=x[l]
\end{array}
$$

$$
a^{*}, b^{*}
$$

"cloe nes?"

$$
\begin{aligned}
& {[x[1]-(a x[0]+b u[0])]^{2} \quad x[1]=a x[0]+b u(0)} \\
& x(1]-(a x[0]+b u[0]) \approx 0 \\
& {[x[l]-(a x[l-1]+b u(l-7))]^{2}} \\
& {\left[\begin{array}{c}
x(1) \\
x(2] \\
\vdots \\
x(l)
\end{array}\right]-\left[\begin{array}{cc}
x(0) & u(0) \\
\vdots \\
x[l-1] & u[l-1]
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
x(1)-(a x[0)+b u(0)) \\
\vdots \\
\vdots \\
x(l)-(a x(l-1)+b u l l-1))
\end{array}\right]} \\
& \iint \underbrace{\left[\begin{array}{c}
x(1) \\
x(2) \\
\vdots \\
x(l]
\end{array}\right]}_{s}-\left.\underbrace{\left[\begin{array}{cc}
x(0) & u(0) \\
x[l-1] & u[l-1]
\end{array}\right]}_{D} \underbrace{\binom{a}{b}}_{\vec{p}}\right|^{2} \\
& \arg \min _{\vec{p}}\|s-D \vec{p}\|^{2} \quad \text { warm np } \quad \text { find } \min _{x}\left(x^{2}+1\right)
\end{aligned}
$$

leat s_{q} vares

$$
\left\|\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]\right\|=\sqrt{e_{1}^{2}+e_{2}^{2}} \quad\left\|\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]\right\|^{2}=\sqrt[e_{e_{1}^{2}+e_{2}^{2}}]{ }{ }^{2} \quad \begin{gathered}
e_{1}^{2}+e_{2}^{2}
\end{gathered}
$$

sum of squared errors

$$
\begin{gathered}
\arg \min _{\vec{p}}\|s-D \vec{p}\|^{2} \\
p^{*}=\left(D^{\top} D\right)^{-1} D^{\top} s
\end{gathered}
$$

$D^{\top} D$ might not be invintib!!
(b) What if there were now two distinct scalar inputs to a scalar system

$$
\begin{equation*}
x[i+1]=a x[i]+b_{1} u_{1}[i]+b_{2} u_{2}[i]+w[i] \tag{3}
\end{equation*}
$$

and that we have measurements as before, but now also for both of the control inputs.
Set up a least-squares problem that you can solve to get an estimate of the unknown system parameters a, b_{1}, b_{2}.

(c) What could go wrong in the previous case? For what kind of inputs would make least-squares fail to give you the parameters you want?
(d) Now consider the two dimensional state case with a single input. $x_{2}\left[\begin{array}{l}x_{1}(i) \\ x_{2}\end{array}\right] \quad\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0]\end{array}\right]$

$$
\vec{x}[i+1]=\left[\begin{array}{l}
x_{1}[i+1] \tag{4}\\
x_{2}[i+1]
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \vec{x}[i]+\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] u[i]+\vec{w}[i]
$$

How can we treat this like two parallel problems to set this up using least-squares to get estimates for the unknown parameters $a_{11}, a_{12}, a_{21}, a_{22}, b_{1}, b_{2}$? Write the least squares solution in terms of your known matrices and vectors (including based on the labels you gave to varionus matrices/vectors in previous parts). Hint: What work/computation can we reuse across the two problems?
$\left[\begin{array}{l}x_{1}(1)=a_{11} x_{1}(0)+a_{12} x_{2}(0)+b_{1} u(0) \\ x_{2}(1)=a_{21} x_{1}(0)+a_{22} x_{2}(0)+b_{2} u(0) \\ x_{1}[2)=a_{11} x_{1}(1)+a_{12} x_{2}[1)+b_{1}(1) \\ x_{2}(2)=a_{21} x_{1}(1)+a_{22} x_{2}(1)+b_{2} u(1)\end{array}\right]$
$\left[\begin{array}{c}x_{1}(1) \\ x_{1}(l)\end{array}\right]=\left[\begin{array}{cccc}x_{1}(0) x_{2}(0) u(0) & 0 & 0 & 0 \\ x_{1}(2) \\ & & & \\ \\ \\ x_{1}\left(b_{1}\right. \\ a_{21} \\ a_{22} \\ b_{2}\end{array}\right]$
Schnitzel

Contributors:

- Anish Muthali.
- Neelesh Ramachandran.
- Anant Sahai.
- Regina Eckert.
- Kareem Ahmad.

