## 1. Eigenvalue Placement in Discrete Time

Recall that, for a discrete linear system to be stable, we require that all of the eigenvalues of $A$ in $\vec{x}[i+1]=A \vec{x}[i]+B \vec{u}[i]$ must have magnitude less than 1.

Consider the following linear discrete time system

$$
\vec{x}[i+1]=\left[\begin{array}{cc}
0 & 1  \tag{1}\\
2 & -1
\end{array}\right] \vec{x}[i]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u[i]+\vec{w}[i]
$$

(a) Is the system given in eq. (1) stable?

$$
\begin{aligned}
&\left|\lambda_{i}\right|<1 \quad \forall \lambda_{i} \\
& \operatorname{det}\left(\left[\begin{array}{cc}
0 & 1 \\
2 & -1
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 1 \\
2 & -1-\lambda
\end{array}\right]\right) \\
& \operatorname{det}(A-\overline{-1})=0=\lambda(1+\lambda)-2 \\
&=\lambda^{2}+\lambda-2 \\
&=(\lambda+2)(\lambda-1)=0 \\
& \Rightarrow \lambda=-2,1
\end{aligned}
$$

(b) We can attempt to stabilize the system by implementing closed loop feedback. That is, we choose our input $u[i]$ so that the system is stable. If we were to use state feedback as in eq. (2), what is an equivalent representation for this system? Write your answer as $\vec{x}[i+1]=A_{\mathrm{CL}} \vec{x}[i]$ for some matrix $A_{\mathrm{CL}}$.


HINT: If you're having trouble parsing the expression for $u[i]$, note that $\left[\begin{array}{ll}f_{1} & f_{2}\end{array}\right]$ is a row vector, while $\vec{x}[i]$ is column vector. What happens when we multiply a row vector with a column vector like this?)

$$
\begin{aligned}
& x[i+1]=A x[i]+B u[i] \\
& =A \times[i]+B f^{\top} \times[i] \\
& =\left[\begin{array}{cc}
0 & 1 \\
2 & -1
\end{array}\right] \times[i]+\underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right] \times(i)} \\
& =\left[\begin{array}{cc}
0 & 1 \\
2 & -1
\end{array}\right] \times[i]+\left[\begin{array}{cc}
f_{1} & f_{i} \\
0 & 0
\end{array}\right] \times(i) \\
& =\left(A+B r^{-1}\right) \times[i] \\
& x(i+1)=\left[\begin{array}{cc}
f_{1} & 1+f_{2} \\
2 & -1
\end{array}\right] x(i) \\
& A_{C L}
\end{aligned}
$$

(c) Find the appropriate state feedback constants, $f_{1}, f_{2}$, that place the eigenvalues of the state space representation matrix at $\lambda_{1}=-\frac{1}{2}, \lambda_{2}=\frac{1}{2}$.

$$
\begin{aligned}
& x(i+1)=\underbrace{\left[\begin{array}{cc}
f_{1} & 1+f_{2} \\
2 & -1
\end{array}\right]}_{A_{C L}} \times(i) \\
& \operatorname{det}\left(A_{C L}-\lambda I\right)=\operatorname{det}\left(\left[\begin{array}{cc}
f_{1} & 1+f_{2} \\
2 & -1
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{cc}
f_{1}-\lambda & 1+f_{2} \\
2 & -1-\lambda
\end{array}\right]\right) \\
& =\left(f_{1}-\lambda\right)(-1-\lambda)-2\left(1+f_{2}\right) \\
& =\left(\lambda-f_{1}\right)(\lambda+1)-2\left(1+f_{2}\right) \\
& =\lambda^{2}+\left(1-f_{1}\right) \lambda-f_{1}-2\left(1+f_{2}\right) \\
& =\lambda^{2}+\left(1+f_{1}\right) \lambda-f_{1}-2-2 f_{2} \quad \lambda^{2}+\alpha \lambda+\beta \\
& \begin{array}{l}
\left(\lambda+y_{2}\right)\left(\lambda-y_{2}\right) \\
=\lambda^{2}+0 \lambda-1 / 4 \\
1-f_{1}=0 \\
-f_{1}-2-2 f_{2}=-y_{4} \\
\left|\frac{1}{3} e^{j \pi / 3}\right|=\left|\frac{1}{3}\right|\left|e^{j \pi / 3}\right|=1 / 3
\end{array}
\end{aligned}
$$

(d) Is the system now stable in closed-loop, using the control feedback coefficients $f_{1}, f_{2}$ that we derived above?
(e) Suppose that instead of $\left[\begin{array}{l}1 \\ 0\end{array}\right] u[i]$ in eq. (1), we had $\left[\begin{array}{l}1 \\ 1\end{array}\right] u[i]$ as the way that the discrete-time control acted on the system. In other words, the system is as given in eq. (3).

$$
\vec{x}[i+1]=\left[\begin{array}{cc}
0 & 1  \tag{3}\\
2 & -1
\end{array}\right] \vec{x}[i]+\left[\begin{array}{l}
B \\
1
\end{array}\right] u[i] \quad \underset{(2 \times 2)(2 \times 1) \rightarrow(2 \times 1)}{ }
$$

Determine whether the system is controllable or not.

$$
\begin{aligned}
& \text { a system y crutrillable if } \\
& C=\left[\begin{array}{cc}
1 & 1 \\
A B & B \\
1 & 1
\end{array}\right] \\
& C=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \\
& C \text { has full rauk } \\
& \text { foll rauk } \Leftrightarrow \text { lin. ind. colvonns }
\end{aligned}
$$

(f) Let's say we still try and apply closed loop feedback to our system. Let's use $u[i]=\left[\begin{array}{ll}f_{1} & f_{2}\end{array}\right] \vec{x}[i]$ to try and control the system. Show that the resulting closed-loop state space matrix is

$$
A_{\mathrm{CL}}=\left[\begin{array}{cc}
f_{1} & f_{2}+1  \tag{4}\\
f_{1}+2 & f_{2}-1
\end{array}\right]
$$

Is it possible to stabilize this system?

$$
\begin{aligned}
\operatorname{det}\left(A_{l l}-\lambda I\right) & =\operatorname{det}\left(\left[\begin{array}{cc}
f_{1} & f_{2}+1 \\
f_{1}+2 & f_{2}-1
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left(\begin{array}{cc}
f_{1}-\lambda & f_{2}+1 \\
f_{1}+2 & f_{2}-1-\lambda
\end{array}\right)\right) \quad B \quad \text { no } \\
& =\left(f_{1}-\lambda\right)\left(f_{2}-1-\lambda\right)-\left(f_{1}+2\right)\left(f_{2}+1\right) \\
& =\left[f_{1} f_{2}-f_{1}-f_{1} \lambda-f_{2} \lambda+\lambda+\lambda^{2}\right)-\left[f_{1} f_{2}+f_{1}+2 f_{2}+2\right] \\
& \left.=\lambda^{2}+\left(1-f_{1}-f_{2}\right) \lambda+f_{1} f_{2}-f_{1}\right)-f_{1} f_{2}-f_{1}-2 f_{2}-2 \\
& =\lambda^{2}+\left(1-f_{1}-f_{2}\right) \lambda-2 f_{1}-2 f_{2}-2 \\
& =(\lambda+2)\left(\lambda-\left(1+f_{1}+f_{2}\right)\right)
\end{aligned}
$$

## 2. Uncontrollability

Recall that, for a $n$-dimensional, discrete-time linear system to be controllable, we require that the controllability matrix $\mathcal{C}=\left[\begin{array}{lllll}A^{n-1} B & A^{n-2} B & \ldots & A B & B\end{array}\right]$ to be rank $n$.
Consider the following discrete-time system with the given initial state:

$$
\begin{gather*}
\vec{x}[i+1]=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-3 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \vec{x}[i]+\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] u[i]  \tag{5}\\
\vec{x}[0]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \tag{6}
\end{gather*}
$$

(a) Is the system controllable?

$$
\begin{aligned}
& C=\left[\begin{array}{ccc}
1 & 1 & 1 \\
A^{2} B & A B & B \\
1 & 1 & 1
\end{array}\right] \\
&=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
2 & 0 & 2
\end{array}\right] \\
& \text { if } C \text { is fur rauk }
\end{aligned}
$$

$$
\text { where can } C \text { take us? }
$$


(b) Show that we can write the $i$ th state as

$$
\vec{x}[i]=\left[\begin{array}{c}
2^{i}  \tag{7}\\
-3 x_{1}[i-1]+x_{3}[i-1] \\
x_{2}[i-1]+2 u[i-1]
\end{array}\right]
$$

Is it possible to reach $\vec{x}[\ell]=\left[\begin{array}{c}-2 \\ 4 \\ 6\end{array}\right]$ for some $\ell$ ? If so, for what input sequence $u[i]$ up to $i=\ell-1$ ?

$$
\vec{x}(i)=\left[\begin{array}{l}
x_{1}[(i) \\
x_{2}(i) \\
x_{3}[i)
\end{array}\right]
$$

(c) Is it possible to reach $\vec{x}[\ell]=\left[\begin{array}{c}2 \\ -3 \\ -2\end{array}\right]$ for some $\ell$ ? For what input sequence $u[i]$ for $i=0$ to $i=\ell-1$ ?
HINT: Use the result for $\vec{x}[i]$ from the previous part.
(d) Find the set of all $\vec{x}[2]$, given that you are free to choose any $u[0]$ and $u[1]$.

## Contributors:

- Anish Muthali.
- Ioannis Konstantakopoulos.
- John Maidens.
- Anant Sahai.
- Regina Eckert.
- Druv Pai.
- Neelesh Ramachandran.
- Titan Yuan.
- Kareem Ahmad.

