## 1. Orthonormality and Least Squares

Recall that, if $U \in \mathbb{R}^{m \times n}$ is a tall matrix (i.e. $m \geq n$ ) with orthonormal columns, then

$$
\begin{equation*}
U^{\top} U=I_{n \times n} \tag{1}
\end{equation*}
$$

However, it is not necessarily true that $U U^{\top}=I_{m \times m}$. In this discussion, we will deal with "orthonormal" matrices, where the term "orthonormal" refers to a matrix that is square with orthonormal columns and rows. Furthermore, for an orthonormal matrix $U$,

$$
\begin{equation*}
U^{\top} U=U U^{\top}=I_{n \times n} \Longrightarrow U^{-1}=U^{\top} \tag{2}
\end{equation*}
$$

This discussion will cover some useful properties that make orthonormal matrices favorable, and we will see a "nice" matrix factorization that leverages orthonormal matrices and helps us speed up least squares.
(a) Suppose you have a real, square, $n \times n$ orthonormal matrix $U$. You also have real vectors $\vec{x}_{1}, \vec{x}_{2}$, $\vec{y}_{1}, \vec{y}_{2}$ such that

$$
\begin{align*}
& \vec{y}_{1}=U \vec{x}_{1}  \tag{3}\\
& \vec{y}_{2}=U \vec{x}_{2} \tag{4}
\end{align*}
$$

This is analogous to a change of basis. Show that, in this new basis, the inner products are preserved. Calculate $\left\langle\vec{y}_{1}, \vec{y}_{2}\right\rangle=\vec{y}_{2}^{\top} \vec{y}_{1}=\vec{y}_{1}^{\top} \vec{y}_{2}$ in terms of $\left\langle\vec{x}_{1}, \vec{x}_{2}\right\rangle=\vec{x}_{2}^{\top} \vec{x}_{1}=\vec{x}_{1}^{\top} \vec{x}_{2}$.

$$
\begin{aligned}
\text { waut t. show }\left\langle y_{1}, y_{2}\right\rangle & =\left\langle x_{1}, x_{2}\right\rangle \\
\left\langle y_{1}, y_{1}\right\rangle & =\left\langle U x_{1}, u x_{2}\right\rangle \\
& =\left(u x_{1}\right)^{\top}\left(u x_{2}\right) \\
& =\left(x_{1}^{\top} u^{\top}\right)\left(u x_{2}\right) \quad\left(u x_{1}\right)^{\top}=x_{1}^{\top} u^{\top} \\
& =x_{1}^{\top} u^{\top} u x_{2} \\
& =x_{1}^{\top} I x_{2} \\
& =x_{1}^{\top} x_{2} \\
& =\left\langle x_{1}, x_{2}\right\rangle
\end{aligned}
$$

(b) Using the change of basis defined in part 1.a, show that, in the new basis, the norms are preserved. Express $\left\|\vec{y}_{1}\right\|^{2}$ and $\left\|\vec{y}_{2}\right\|^{2}$ in terms of $\left\|\vec{x}_{1}\right\|^{2}$ and $\left\|\vec{x}_{2}\right\|^{2}$.

$$
\langle x, x\rangle=\|x\|^{2}
$$

$$
\begin{array}{rlrl}
\left\|y_{1}\right\|^{2}=\left\|x_{1}\right\|^{2} & \left\|y_{1}\right\|^{2} & =\left\|u x_{1}\right\|^{2} & \left\|y_{1}\right\|^{2}=\left\langle y_{1}, y_{1}\right\rangle \\
\left\|y_{2}\right\|^{2}=\left\|x_{2}\right\|^{2} & & =\left\langle x_{1} x_{1}\right\rangle \\
1 & & =\left\langle u x_{1}, u x_{1}\right\rangle & \\
& =\left(x_{1}^{\top} u^{\top}\right)\left(u x_{1}\right) & v^{\top} u=I & \\
& =x_{1}^{\top} \|_{1}^{2} \\
& =\left\langle x_{1}, x_{1}\right\rangle & \\
& =\left\|x_{1}\right\|^{2} &
\end{array}
$$

 scale-parameters (each $a_{i}$ ). We are trying to learn the model $\vec{a}$. You have $m$ data points ( $\vec{x}_{i}, y_{i}$ ), with each $\vec{x}_{i} \in \mathbb{R}^{n}$. Each $\vec{x}_{i}$ is a different input vector that you take the inner product of with $\vec{a}$, giving a scalar $y_{i}$.
Set up a matrix-vector equation of the form $X \vec{a}=\vec{y}$ for some $X$ and $\vec{y}$, and propose a way to estimate $\vec{a}$.


$$
\begin{aligned}
& X_{\hat{\uparrow}}=y \\
& \hat{a}=\left(x^{\top} x\right)^{-1} x^{\top} y
\end{aligned}
$$

(d) Let's suppose that we can write our $X$ matrix from part 1.c as

$$
\begin{equation*}
X=M V^{\top} \tag{5}
\end{equation*}
$$

for some matrix $M \in \mathbb{R}^{m \times n}$ and some orthonormal matrix $V \in \mathbb{R}^{n \times n}$. Find an expression for $\widehat{\vec{a}}$ from the previous part, in terms of $M$ and $V^{\top}$.

Note: take this form as a given. We will go over how to find such a $V$ and $M$ later.

$$
\begin{array}{rlr}
\hat{\mathbf{a}} & =\left(X^{\top} X\right)^{-1} X^{\top} \boldsymbol{y} & (A B)^{-1}=B^{-1} A^{-1} \\
& =\left(\left(M V^{\top}\right)^{\top}\left(M V^{\top}\right)\right)^{-1}\left(M v^{\top}\right)^{\top} y & (A B C)^{-1}=C^{-1} B \\
& =(v \underbrace{\top} M V^{\top})^{-1}\left(M V^{\top}\right)^{\top} y & \\
& =\left(V^{\top}\right)^{-1}\left(M^{\top} M\right)^{-1} v^{-1}\left[\left(v^{\top}\right)^{\top} M^{\top}\right] y & \left(V^{\top}\right)^{\top}=v \\
& =v\left(M^{\top} M\right)^{-1} v^{-1}\left[V M^{\top}\right] y & \left(v^{-1}\right)^{\top}=v \\
\hat{a} & =v\left(M^{\top} M\right)^{-1} M^{\top} y & v^{-1}=v^{\top} \\
&
\end{array}
$$

(e) Now suppose that we have the matrix

$$
\left[\begin{array}{c}
\vec{x}_{1}^{\top}  \tag{6}\\
\vec{x}_{2}^{\top} \\
\vdots \\
\vec{x}_{m}^{\top}
\end{array}\right]:=X=U \Sigma V^{\top}
$$

where $U \in \mathbb{R}^{m \times m}$ is an orthonormal matrix, and $V \in \mathbb{R}^{n \times n}$ is an orthonormal matrix. Here,
$\Sigma=\left[\begin{array}{cccc}\sigma_{1} & 0 & \ldots & 0 \\ 0 & \sigma_{2} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \sigma_{n} \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0\end{array}\right]$. Here we assume that we have more data points than the dimension of
our space (that is, $m>n$ ). Also, the transformation $V$ in part e) is the same $V$ in this factorized representation.
Set up a least squares formulation for estimating $\vec{a}$ and find the solution to the least squares. Why might this factorization help us compute $\widehat{\vec{a}}$ faster?

Note: again, take this factorization as a given. We will go over how to find $U, \Sigma$, and $V$ later.

## Contributors:

- Neelesh Ramachandran.
- Kuan-Yun Lee.
- Anant Sahai.
- Kumar Krishna Agrawal.

$$
\begin{aligned}
& \hat{a}=V\left(M^{\top} M\right)^{-1} M^{\top} y \quad X=M V^{\top} \\
& X=U \Sigma V^{\top} \\
& M=U \varepsilon \\
& \hat{a}=V\left(M^{\top} M\right)^{-1} M^{\top} y \quad M^{\top}=Z^{\top} u^{\top} \\
& =v\left(\Sigma^{\top} u^{\top} u \Sigma\right)^{-1} \Sigma^{\top} u^{\top} y \\
& =v\left(\Sigma^{\top} \Sigma\right)^{-1} \Sigma^{\top} u^{\top} y \\
& \Sigma^{\top}=\left[\begin{array}{ccccc}
\sigma_{1} & 0 & \cdots & \cdots & 0 \\
0 & \sigma_{2} & 0 & \cdots & 0 \\
0 & \ddots & 0
\end{array}\right] \quad \Sigma=\left[\begin{array}{ccc}
\sigma_{1} & \ddots & 0 \\
0 & & 0 \\
& & \\
& & \\
(m \times n)
\end{array}\right] \\
& \Sigma^{\top} \Sigma=\left[\begin{array}{ccccc}
\sigma_{1} & 0 & \ldots & \cdots & 0 \\
0 & \sigma_{2} & 0 & \ldots & 0 \\
0 & \ddots & \sigma_{n} & 0
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & \ddots & \\
0 & \ddots & 0 \\
0 & & \sigma_{n} \\
& & \\
& \\
&
\end{array}\right]=\left[\begin{array}{ccc}
\sigma_{1}^{2} & & \\
\sigma_{2}{ }^{2} & 0 \\
0 & \ddots \times n) \\
& & \sigma_{n}^{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left(\Sigma^{\top} \Sigma\right)^{-1}=\left[\begin{array}{ccc}
\frac{1}{\sigma_{1}^{2}} & & \\
& \ddots & 0 \\
0 & & \frac{1}{\sigma_{n}^{2}}
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]^{-1}=\left[\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & \frac{1}{3}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
1 / 2 & 0 \\
0 & 1 / 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
& \hat{a}=v\left(\Sigma^{\top} \Sigma\right)^{-1} \Sigma^{\top} u^{\top} y \\
& {\left[\begin{array}{ccc}
\frac{1}{\sigma_{1}^{2}} & & 0 \\
0 & \ddots & \frac{1}{\sigma_{n}^{2}}
\end{array}\right]\left[\begin{array}{cccc}
\sigma_{1} & \ddots & 0 & \\
0 & \sigma_{n} &
\end{array}\right]} \\
& =U\left[J u^{\top} y\right.
\end{aligned}
$$

SUMMER
links. eecs16.org/nima - dis

