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1. 2 x 2 Upper Triangularization Example

Previously in this course, we have seen the value of changing our coordinates to be eigenbasis-
aligned, because we can then view the system as a set of parallel scalar systems. Diagonalization
causes these scalar equations to be fully uncoupled such that they can be solved separately. But even
when we cannot diagonalize, we can upper-triangularize such that we can still solve the equations one
at a time, from the "bottom up".

Recall that Schur Decomposition is a method by which we can take some M matrix and decompose
it into U TU where U is an orthonormal matrix and T is an upper triangular matrix. This is the Real
Schur Decomposition algorithm from Note 15 for reference.

Algorithm 1 Real Schur Decomposition

Require: A square matrix A € R"*" with real eigenvalues.
Ensure: An orthonormal matrix U € R"™" and an upper-triangular matrix T € R"*" such that A =
uru'.
1: function REALSCHURDECOMPOSITION(A)
2 if Ais1 x 1 then
3 return {1} LA
4: end if
5 (71, A1) := FINDEIGENVECTOREIGENVALUE(A)
6 Q := EXTENDBASIS({7 }, R") > Extend {7} to a basis of R" using Gram-Schmidt; see Note 13
7

Unpack Q := {‘71 Q}

=T

8: Compute and unpack QT AQ = lq)‘l 12
n-1 Ax

9: (P, T) := REALSCHURDECOMPOSITION(A27)

0 U:= {171 @P}
=T
1m:  T:= fl a1P
6,, T
122 return (U, T)
13: end function
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In this problem, we are going to be working with the following 2 x 2 matrix:
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(a) Remember that diagonalization is another tool we have learned that can be used to decompose
a matrix. However, there is the restriction that our transformation V (which was chosen to be
a matrix of the eigenvectors of the A matrix) must be invertible. That means that we needed n
linearly independent eigenvectors for a matrix A € R"*". For the given matrix A, calculate its

eigenvalues and eigenvectors and determine whether or not we can diagonalize the matrix.
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(b) Hopefully, in the previous part you observed that this matrix has repeated eigenvalues and as a
result did not have linearly independent eigenvectors. Instead let’s try and upper triangularize
the system. Recall that the first step of Schur Decomposition is to calculate an eigenvalue, eigen-
vector pair. We have already done that in 1.a, so we can directly use our calculations.

Using Gram-Schmidt, extend an orthogonal basis for R?> from our eigenvector 7. In other
words, find an orthonormal set of vectors Q = {171 172} where Span (71, 7>) = R? (HINT: What

vectors do we typically append for basis extension?)
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(c) Now that we have calculated some Q = [171 Efz} , let’s apply this transformation to our original

matrix A. Calculate Q" AQ and comment on the resulting matrix.

I I S
Q' "{5 'b'z

QTAQ =T = <

(d) How do the eigenvalues of the original A matrix connect to the upper triangular matrix T =
Q" AQ that we calculated in the previous part.
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(e) Let’s say you were given a system: o« / Lov/lﬂ(
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Describe how you could solve for ¥(¢) given an initial condition X(0).
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