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1. Minimum Energy Control & Spectral Theorem

In controllability/reachability analysis, we try to solve the linear system:

Ci?

2

664

~u[0]
...

~u[i? � 1]

3

775 = ~x? � Ai?~x0 (1)

for the vector quantities ~u[0], . . . ,~u[i? � 1]. Cleaning up notation, let us fix i?, let C := Ci? , let ~z :=

~x? � Ai?~x0, and let ~u :=

2

664

~u[0]
...

~u[i? � 1]

3

775. Then this linear system becomes

C~u = ~z (2)

In the real world, we would like to use this framework to control mechanical systems, often expending
the minimum energy possible.

But what do we mean by the "energy" of the control? In this context, we will use the squared norm
of the input vector kuk2 = u2

1 + · · ·+ u2
n as the model for the cost to applying a set of controls to our

system.

Why do we use this definition? This formula for the cost model is closely connected to many physical
scenarios relating to energy. Consider a few examples below:

• Ecapacitor =
1
2 CV2

• Espring = 1
2 kx2

• Ekinetic =
1
2 mv2

And so we find that the definition we use is a natural one.

Optional EECS16A Refresher: Recall the following vector spaces:

The range (or column space) of a matrix A refers to the following vector space Col(A) = {A~x : ~x 2 Rn}. It is
the vector space consisting of all possible linear combinations of the columns of A.

Then, there is the null space of A, which refers to the following vector space Null(A) = {~x : A~x = 0}.
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(a) Suppose we would like to solve for the minimum energy (or minimum norm) solution of the
linear system C~u = z. This problem can be expressed as the following optimization problem:

argmin
~u

k~uk2 = argmin
u[i]

`�1

Â
i=0

u[i]2 (3)

s.t. C~u = ~z (4)

Symmetric matrices can make calculations and reasoning about the properties of a matrix much
easier. Suppose C is a real, symmetric matrix. Rewrite C in terms of its spectral decomposition
(take Q to be the orthonormal basis of eigenvectors of C and L to be the diagonal matrix of the
eigenvalues).

(b) One way to look at minimum energy control is through lens of our vector spaces. How might
we do this?

Well, Spectral Theorem tells us that Q is an orthonormal basis of Rn. If Rank(C) = r, then Q can
be written as the block matrix

h
Qr Qn�r

i
where Qr forms an orthonormal basis for Col(C) and

Qn�r similarly forms one for Null(C).

Let’s perform an orthonormal basis change:

~u = Qe~u (5)

Using our new basis, rewrite ~u in terms of Qr and Qn�r.

(HINT: Consider breaking up Q and ~u into a block matrix and partitioned vector respectively.)
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(c) Ultimately, the objective we are trying to minimize is still k~uk2. Use your findings from part (b)
to show that k~uk2 = ke~uCol(C)k2 + ke~uNull(C)k2.

(HINT: Given some arbitrary orthonormal matrix U and arbitrary vector ~p, how are k~pk and kU~pk
related?)

(d) Putting everything from the last two parts together, let us now solve for the solution to the
minimum energy problem (written once more for convenience):

argmin
~u

k~uk2 = argmin
u[i]

`�1

Â
i=0

u[i]2 (6)

s.t. C~u = ~z (7)

Solve for the optimal minimum energy input ~u⇤ in its simplest form in terms of ~uCol(C) and/or
~uNull(C). Explain what your result means intuitively.

(HINT: Which of ~uCol(C) or ~uNull(C) doesn’t effect C~u (try to think about your vector space definitions)?
What should we do to that value if we want to minimize the squared norm of the input?)
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(e) Now, let’s do a numerical example. Consider the following linear discrete time system

~x[i + 1] =

"
�1 0
0 �1

#
~x[i] +

"
�1
1

#
u[i] (8)

Find the controllability matrix C for this system.

(f) Now, suppose we want to achieve desired state of ~x[2] =

"
4
�4

#
at timestep i = 1. Assume your

initial condition is ~x[0] =

"
0
0

#
.

Write your linear system to solve for the input vector ~u =

"
~u[0]
~u[1]

#
in the form C~u = ~z. Then,

solve for one ~u that achieves the desired system state. Remember, there will be many solutions
as the system is underdetermined.

(HINT: Make use of the linear system formulation that comes as a result of controllability analysis shown
on page 1.)
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(g) Finally, notice that Col(C) = span

("
1
�1

#)
and Null(C) = span

("
1
1

#)
.

The minimum norm solution is ~umin =

"
2
�2

#
. We will compare this to another arbitrary solution

"
3
�1

#
.

i Write both ~umin and

"
3
�1

#
as a linear combination of the column and null space span

vectors. Compare the coefficients of the null space span vector.

ii Compare the norms of the two solutions. Verify that k~umink is smaller.
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