1. Computing the SVD: A "Tall" Matrix Example

Define the matrix

$A=u \varepsilon v^{\top}$

$$
A=\left[\begin{array}{cc}
1 & -1 \tag{1}\\
-2 & 2 \\
2 & -2
\end{array}\right](3 \times 2)=(3 \times 3)(3 \times 2)(2 \times 2)
$$

Here, we expect $U \in \mathbb{R}^{3 \times 3}, \Sigma \in \mathbb{R}^{3 \times 2}$, and $V \in \mathbb{R}^{2 \times 2}$ (recall that U and V must be square since they are orthonormal matrices).

In this problem, we will walk through the SVD algorithm, prove some important theorems about the SVD matrices and column/null spaces, and consider an alternate way to approach the SVD.
(a) Let's start by trying to write A as an outer product in the form of $\sigma \vec{u} \vec{v}^{\top}$ where both \vec{u} and \vec{v}^{\top} have unit norm. (HINT: Are the columns of A linearly independent or dependent? What does that tell us about how we can represent them?)
(b) In this part, we will walk through Algorithm 7 in Note 16. This algorithm applies for a general matrix $A \in \mathbb{R}^{m \times n}$.
i. Find $r:=\operatorname{rank}(A)$. Compute $A^{\top} A$ and diagonalize it using the spectral theorem (i.e. find V and Λ).
ii. Unpack $V:=\left[\begin{array}{ll}V_{r} & V_{n-r}\end{array}\right]$ and unpack $\Lambda:=\left[\begin{array}{cc}\Lambda_{r} & 0_{r \times(n-r)} \\ 0_{(n-r) \times r} & 0_{(n-r) \times(n-r)}\end{array}\right]$.
iii. Find $\Sigma_{r}:=\Lambda_{r}^{1 / 2}$ and then find $\Sigma:=\left[\begin{array}{cc}\Sigma_{r} & 0_{r \times(n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}\end{array}\right]$.
iv. Find $U_{r}:=A V_{r} \Sigma_{r}^{-1}$, where $U_{r} \in \mathbb{R}^{3 \times 1}$ and then extend the basis defined by columns of U_{r} to find $U \in \mathbb{R}^{3 \times 3}$.
(HINT: How can we extend a basis, and why is that needed here?)

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{1} & a_{1} \\
a_{3} & a_{4}
\end{array}\right]\left[\begin{array}{ll}
v_{1} & v_{2} \\
v_{3} & v_{4}
\end{array}\right]=[\square]}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{1^{2}+(-2)^{2}+(2)^{2}} \\
& \sqrt{9} \\
& \|v\|=\sqrt{2} \\
& \|u\|=3 \\
& \hat{u}=\frac{u}{\|u\|}=\left[\begin{array}{c}
1 / 3 \\
-2 / 3 \\
2 / 3
\end{array}\right] \quad \hat{v}^{\top}=\frac{v^{\top}}{\|v\|}=\left[\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right] \\
& u=\|u\| \hat{u} \\
& v=\|v\| \hat{v} \\
& A=u v^{\top}=(\|u\| \hat{u})(\|v\| \hat{v})^{\top} \\
& =\|u\|\|v\| \hat{u} \hat{v}^{\top}=\sigma \\
& \sigma=\|u\|\|v\|=3 \cdot \sqrt{2}
\end{aligned}
$$

v. Use the previous parts to write the full SVD of A.
vi. If we were to calculate the SVD of our matrix using a calculator, are we guaranteed to always get the same SVD? Why or why not?
(c) We now want to create the SVD of A^{\top}. What are the relationships between the matrices composing A and the matrices composing A^{\top} ?

$$
\begin{aligned}
& A^{\top} A=\left[\begin{array}{ccc}
1 & -2 & 2 \\
-1 & 2 & -2
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
-2 & 2 \\
2 & -2
\end{array}\right]=\left[\begin{array}{cc}
9 & -9 \\
-9 & 9
\end{array}\right] \\
& 2 \times 3)(3 \times 2) \\
& \quad(2 \times 2) \\
& r=1
\end{aligned}
$$

Reminder: Spectral Theorem

$$
\begin{aligned}
& S=s^{\top} \\
& S=Q \wedge Q^{\top} \quad Q^{\top}=Q^{-1} \\
& =Q \wedge Q^{-1} \\
& \operatorname{det}\left(\lambda^{\top} A-\lambda I\right)=\operatorname{der}\left(\begin{array}{cc}
9-\lambda & -\uparrow \\
-\uparrow & 9-\lambda
\end{array}\right) \\
& =(9-\lambda)^{2}-\delta 1=0 \\
& (9-\lambda)^{2}=81 \\
& 9-\lambda= \pm 9 \\
& 9-\lambda=9 \quad 9-\lambda=-9 \\
& \lambda=0,18
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=0 \\
& \operatorname{novi}\left(\begin{array}{cc}
9 & -9 \\
-9 & 9
\end{array}\right)=\operatorname{sen}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right\}\right\} \\
& v_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \\
& \begin{array}{l}
\lambda=18 \\
\operatorname{nul1}\left(\begin{array}{cc}
-9 & -9 \\
-9 & -9
\end{array}\right)=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\} \\
v_{2}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right]
\end{array} .
\end{aligned}
$$

$$
\begin{aligned}
& \left(A^{\top} A\right)=Q \wedge Q^{\top} \\
& Q=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \quad \Lambda=\left[\begin{array}{cc}
18 & 0 \\
0 & 0
\end{array}\right] \\
& \begin{aligned}
A & =u \Sigma v^{\top} \\
A^{\top} A & =\left(u \Sigma v^{\top}\right)^{\top} u \Sigma v^{\top} \quad\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & \sigma_{2} & 0
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right]
\end{aligned} \\
& \begin{array}{l}
=\left(v \Sigma^{\top} u^{\top}\right) u \Sigma v^{\top} \\
=v \Sigma^{\top} \Sigma v^{\top}
\end{array} \quad=\left[\begin{array}{cc}
\sigma_{1}{ }^{2} & 0 \\
0 & \sigma_{2}{ }^{2}
\end{array}\right] \\
& A^{\top} A=V \varepsilon^{\top} \sum u^{\top} \quad A^{\top} A=Q \wedge Q^{\top} \\
& V=Q=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
& \Lambda=\left[\begin{array}{ll}
18 & 0 \\
0 & 0
\end{array}\right] \\
& v=\left[\begin{array}{ll}
v_{r} & v_{n-r}
\end{array}\right]= \\
& \Lambda_{r}=18 \\
& v_{r}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right] \quad v_{n-r}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{r}=18 \\
& \Sigma_{r}=\Lambda_{r}^{1 / 2}=\sqrt{18} \\
& \Sigma=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{18} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] \\
& u=\left[\begin{array}{ll}
u_{r} & u_{n-r}
\end{array}\right] \\
& u_{r}=A v_{r} \Sigma_{r}^{-1} \\
& v_{r}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right] \\
& u_{r}=\left[\begin{array}{cc}
1 & -1 \\
-2 & 2 \\
2 & -2
\end{array}\right]\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}}
\end{array}\right] \frac{1}{\sqrt{18}} \quad \sum_{r}=\sqrt{18} \\
& =\left[\begin{array}{c}
-1 / 3 \\
2 / 3 \\
-2 / 3
\end{array}\right] \quad e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad e_{i}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
& \left\{\left[\begin{array}{c}
-1 / 3 \\
2 / 3 \\
-2 / 3
\end{array}\right], e_{1}, e_{2}, e_{3}\right\} \rightarrow G . S .
\end{aligned}
$$

Contributors:

- Anish Muthali.
- Neelesh Ramachandran.
- Druv Pai.
- John Maidens.
- Nikhil Jain.
- Chancharik Mitra.

