1. Geometric Interpretation of the SVD
(a) When we plot the transformation given by a specific matrix, we think about how the matrix transforms the standard basis vectors. In 2D, let $\vec{e}_{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\vec{e}_{y}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. The vectors \vec{e}_{x} and \vec{e}_{y} are shown below

Consider the following matrix

$$
A=\left[\begin{array}{cc}
-1 & 0 \tag{1}\\
0 & 2
\end{array}\right]
$$

How would A transform \vec{e}_{x} and \vec{e}_{y} ? Plot the result.

$$
A e_{x}=\left[\begin{array}{rr}
-1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0
\end{array}\right]
$$

description: reflection about the y-axy

$$
A e_{1}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
2
\end{array}\right]
$$

description scaling by a faster \& 2.
(b) Let's take a look at a special 2×2 matrix.

$$
R=\left[\begin{array}{cc}
\cos _{1} & u_{2} \\
\sin \theta & -\sin \theta \\
\cos \theta
\end{array}\right]
$$

Show that this matrix is orthonormal. This matrix is called a rotation matrix and will rotate any vector counterclockwise by θ degrees.

(c) Now let's consider how this transformation looks in the lens of the SVD. You are given the following matrix A :

$$
A=\left[\begin{array}{cc}
-1 & -2 \tag{3}\\
2 & 1
\end{array}\right]
$$

Recall that the SVD of this matrix is given by $A=U \Sigma V^{\top}$. Assume you are told that

$$
V=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \tag{4}\\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

We will try to deduce U and Σ graphically, and the confirm our results numerically. Plot the transformation given by V by showing how it affects \vec{e}_{x} and \vec{e}_{y} via left multiplication. (HINT: Try writing V as a rotation matrix with a specific θ.)

$$
\begin{aligned}
& =\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] \\
& v e_{y}=\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
\end{aligned}
$$

(d) Suppose you are told that the transformation of $A V$ on \vec{e}_{x} and \vec{e}_{y} looks like

Write this transformation $A V$ in terms of U and Σ. Recall that the U matrix is an orthonormal matrix so it will correspond to any rotations or reflections, and the Σ matrix is a diagonal matrix and will perform any scaling operations. Based on this fact and the plot of the transformation above, write down a guess for what U and Σ might be.

$A=u \varepsilon v^{\top}$

$$
\begin{aligned}
& A V=\left(u \Sigma v^{\top}\right) v=u \Sigma \\
& \uparrow \\
& v i \text { orthonormal }
\end{aligned}
$$

$$
\begin{array}{rlr}
A V e_{x} & =u \varepsilon e_{x} & \quad A v e_{y}=u\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =u\left[\begin{array}{ll}
3 & 0 \\
0 & \sigma_{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
u=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{cc}
-1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
\end{array}
$$

the previous part?
(f) Using your answer for U and Σ from the previous part, plot the transformation of Σ on \vec{e}_{x} and \vec{e}_{y}. From here, plot the transformation of $U \Sigma$ on \vec{e}_{x} and \vec{e}_{y}. Does the final plot resemble the transformation shown by $A V$?

Contributors:

- Neelesh Ramachandran.
- Lynn Chua.
- Shane Barratt.
- Kuan-Yun Lee.
- Anant Sahai.
- Kareem Ahmad.
- Oliver Yu.
- Anish Muthali.
given A, v find u, ε

$$
\begin{aligned}
& v=\left[\begin{array}{cc}
1 & 1 \\
v_{1} & v_{2} \\
1 & 1
\end{array}\right] \\
& A v=u \varepsilon\left[v^{\top} v\right] \\
& A v=4 \varepsilon \\
& A\left[\begin{array}{ll}
i_{1} & v_{2} \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
i_{1} & \dot{u}_{2} \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right] \\
& {\left[\begin{array}{cc}
1 & 1 \\
A v_{1} & A v_{2} \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
\sigma_{1} u_{1} & \sigma_{2} u_{2} \\
1 & 1
\end{array}\right]} \\
& A v_{1}=\sigma_{1} u_{1} \\
& A=\left[\begin{array}{cc}
-1 & -2 \\
2 & 1
\end{array}\right] \quad v=\left[\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right] \\
& A v_{1}=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}}-\frac{2}{\sqrt{2}} \\
2 / \sqrt{2}+1 / \sqrt{2}
\end{array}\right]=\left[\begin{array}{r}
-3 / \sqrt{2} \\
3 / \sqrt{2}
\end{array}\right]=3\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2}^{2}
\end{array}\right] \\
& \sigma_{1}=3 \\
& u_{1}= \\
& A v_{2}=\left(\begin{array}{c}
-1 / \sqrt{2}^{2} \\
-1 / \sqrt{2}_{2}
\end{array}\right]=\begin{array}{l}
\sigma_{2} u_{2} \\
\sigma_{2}=1
\end{array} \\
& \begin{array}{l}
\sigma_{2}=1 \\
u_{2}=\left[\begin{array}{l}
-v / 2 \\
-1 / \sqrt{2}
\end{array}\right]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& u\left[\begin{array}{ll}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \sigma_{1} u\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

