
EECS 16B Designing Information Systems and Devices II UC Berkeley Spring 2023
Homework 9

This homework is due on Friday, March 24, 2023, at 11:59PM. Self-
grades and HW Resubmissions are due on the following Friday, March
31, 2023, at 11:59PM.

1. Open-Loop and Closed-Loop Control

In last week’s lab-related System ID problem, we built SIXT33N’s motor control circuitry and devel-
oped a linear model for the velocity of each wheel. We are one step away from our goal: to have
SIXT33N drive in a straight line! We will see how to use the model we developed in the System ID
problem to control SIXT33N’s trajectory to be a straight line.

More specifically, in this problem, we will explore how to use open-loop and closed-loop control to
drive the trajectory of your car in a straight line.

Part 1: Open-Loop Control

An open-loop controller is one in which the input is predetermined using your system model and
the goal, and not adjusted at all during operation. To design an open-loop controller for your car,
you would set the PWM duty-cycle value of the left and right wheels (inputs uL[i] and uR[i]) such
that the predicted velocity of both wheels is your target wheel velocity (vt). You can calculate these
inputs from the target velocity vt and the θL, θR, βL, βR values you learned from data. In the System
ID problem and lab, we have modeled the velocity of the left and right wheels as

vL[i] = dL[i + 1]− dL[i] = θLuL[i]− βL; (1)

vR[i] = dR[i + 1]− dR[i] = θRuR[i]− βR (2)

where dL,R[i] represent the distance traveled by each wheel.

(a) Find the open-loop control that would give us vL[i] = vR[i] = vt. That is, solve the model
(Equations (1) and (2)) for the inputs uL[i] and uR[i] that make the velocities vL[i] = vR[i] =
vt.
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In practice, the θL, θR, βL, βR parameters are learned from noisy data, and so can be wrong. This means
that we will calculate the velocities for the two wheels incorrectly. When the velocities of the two
wheels disagree, the car will go in a circle instead of a straight line. Thus, to make the car go in a
straight line, we need the distances traveled by both wheels to be the same at each timestep.
This prompts us to simplify our model. Instead of having two state variables v⃗L and v⃗R, we can just
have a state variable determining how far we are from the desired behavior of going in a line – a state
which we will want to drive to 0.
This prompts us to define our state variable δ to be the difference in the distance traveled by the left
wheel and the right wheel at a given timestep:

δ[i] := dL[i]− dR[i] (3)

We want to find a scalar discrete-time model for δ[i] of the form

δ[i + 1] = λOLδ[i] + f (uL[i], uR[i]). (4)

Here λOL is a scalar and f (uL[i], uR[i]) is the control input to the system (as a function of uL[i] and
uR[i]).
(b) Suppose we apply the open-loop control inputs uL[i], uR[i] to the original system. Using Equa-

tions (1) and (2), write δ[i + 1] in terms of δ[i], in the form of Equation (4). What is the eigen-
value λOL of the model in Equation (4)? Would the model in Equation (4) be stable with
open-loop control if it also had a disturbance term?

(HINT: For open-loop control, we set the velocities to vL[i] = vR[i] = vt. What happens when we
substitute that into Equations (1) and (2) and then apply the definition of δ[i] and δ[i + 1]?)

Part 2: Closed-Loop Control
Now, in order to make the car drive straight, we must implement closed-loop control – that is, control
inputs that depend on the current state and are calculated dynamically – and use feedback in real time.

(c) If we want the car to drive straight starting from some timestep istart > 0, i.e., vL[i] = vR[i] for
i ≥ istart, what condition does this impose on δ[i] for i ≥ istart?

(d) How is the condition you found in the previous part different from the condition:

δ[i] = 0, i ≥ istart? (5)

Assume that istart > 0, and that dL[0] = 0, dR[0] = 0.

This is a subtlety that is worth noting and often requires one to adjust things in real systems.

(e) From here, assume that we have reset the distance travelled counters at the beginning of this
maneuver so that δ[0] = 0. We will now implement a feedback controller by selecting two
dimensionless positive coefficients, fL and fR, such that the closed loop system is stable with
eigenvalue λCL. To implement closed-loop feedback control, we want to adjust vL[i] and vR[i] at
each timestep by an amount that’s proportional to δ[i]. Not only do we want our wheel velocities
to be some target velocity vt, we also wish to drive δ[i] towards zero. This is in order to have the
car drive straight along the initial direction it was pointed in when it started moving. If δ[i] is
positive, the left wheel has traveled more distance than the right wheel, so relatively speaking,
we can slow down the left wheel and speed up the right wheel to cancel this difference (i.e., drive
it to zero) in the next few timesteps. The action of such a control is captured by the following
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velocities.

vL[i] = vt − fLδ[i]; (6)

vR[i] = vt + fRδ[i]. (7)

Give expressions for uL[i] and uR[i] as a function of vt, δ[i], fL, fR, and our system parameters
θL.θR, βL, βR, to achieve the velocities above.

(f) Using the control inputs uL[i] and uR[i] found in part (e), write the closed-loop system equation
for δ[i + 1] as a function of δ[i]. What is the closed-loop eigenvalue λCL for this system in
terms of λOL, fL, and fR?

(g) What is the condition on fL and fR for the closed-loop system in the previous part to be stable
in the presence of disturbance?

Stability in this case means that δ is bounded and will not go arbitrarily high. In fact, if our calculated
β and θ are perfectly accurate, then δ[i] → 0, so the car will (eventually) drive straight!

One question remains – what if our calculated β and θ are not perfectly accurate? The answer turns
out to be that there is some small steady-state discrepancy that your δ will converge to. You will see
how to quantify this in next week’s homework.
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2. Impact of Model Estimation Error on Open- and Closed-loop Control

In the previous problem, you worked on a System ID problem related to controlling the SIXT33N
motor control circuitry to move a car in a straight line. This was done using both open-loop and
closed-loop control. Recall that the original system model equations were

vL[i] = dL[i + 1]− dL[i] = θLuL[i]− βL; (8)

vR[i] = dR[i + 1]− dR[i] = θRuR[i]− βR (9)

1 where uL,R[i] represent the PWM inputs, vL,R[i] represent velocity outputs, and θL,R and βL,R repre-
sent the model parameters. You are encouraged to re-visit Homework 6, Question 8 for the detailed
definitions of these parameters.

Furthermore, in the problem last week, you explored controlling the car using both open-loop and
closed-loop systems to keep it driving in a straight line. We simplified the model to use a new state
variable δ[i] as the difference between the left and right wheel distances traveled:

δ[i] := dL[i]− dR[i] (10)

In the open-loop case, we found that δ[i + 1] = δ[i], i.e. the open-loop eigenvalue of the discrete-time
system is λOL = 1. This did not meet the stability criteria: it forms an unstable system in the presence
of disturbances.

One source of disturbance is the error between our model’s estimates of parameters θL, θR, βL, and
βR vs. their true physical values. Our model uses estimates of these parameters, which themselves
are learned from noisy data and have some inherent inaccuracies. This week, we want to understand
how much these model inaccuracies impact our car control.

(a) Recall that in the open-loop case, we found simple equations for the inputs:

uL[i] =
vt + βL

θL
(11)

uR[i] =
vt + βR

θR
(12)

where vt is the model’s target velocity for both wheels when the car is going straight.

Let θ⋆L, θ⋆R, β⋆
L, β⋆

R be the true physical values for the parameters, which our model does not know.
Instead, our model uses our best estimates of the parameters, i.e. θL, θR, βL, βR as before. Mathe-
matically, the true physical model of our system is:

vL[i] = θ⋆LuL[i]− β⋆
L; (13)

vR[i] = θ⋆RuR[i]− β⋆
R (14)

but the inputs uL,R[i] are still using the model’s estimates as per equations 11 and 12.

Suppose that there is a 10% relative error between θL in the model and θ⋆L in the physical system.
That is,

θ⋆L − θL

θL
= 0.1. (15)
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Also assume there is no relative error between βL in the model and β⋆
L in the physical system.

That is, βL = β⋆
L.

If we used the open-loop control inputs from 11, what would be the resulting velocity relative
error, vL [i]−vt

vt
?

NOTE: For concreteness, use the values θL = 2, βL = β⋆
L = −2.5, and vt = 200, but θ⋆L = 2.2.

As you saw above, there is some discrepancy between what the model thinks the velocity of the left
wheel is vs. what is is in reality for the open-loop controller. The same can be said for the right wheel
- and it could be a different discrepancy from the left. This would result in our car not going straight.

Last week, we introduced closed-loop control to stabilize the system. This helps the controller
achieve the desired result in the presence of disturbances, such as the parameter estimation errors we
introduced here. Let’s see how well our closed-loop controller does in the presence of these errors.

Recall our closed-loop controller velocity equations:

vL[i] = vt − fLδ[i] (16)

vR[i] = vt + fRδ[i] (17)

where vt is the target velocity (for both wheels) and fL,R are the feedback coefficients for each wheel.
This yielded our left and right closed-loop control inputs:

uL[i] =
vt − fLδ[i] + βL

θL
(18)

uR[i] =
vt + fRδ[i] + βR

θR
(19)

Moreover, you showed that the closed-loop discrete-time system is:

δ[i + 1] = δ[i] + θLuL[i]− θRuR[i]− βL + βR (20)

which you then showed could be stabilized for a range of fL + fR.

(b) Suppose we have 10% relative error between estimated model parameters θL, θR and the real
model parameters θ⋆L, θ⋆R:

θ⋆L − θL

θL
= +0.1; (21)

θ⋆R − θR

θR
= −0.1. (22)

Also suppose there is no relative error between estimated model parameters βL, βR and real
model parameters β⋆

L, β⋆
R in the physical system. That is, βL = β⋆

L and βR = β⋆
R. Given these

estimation errors, what is the true system equation? What is the closed-loop eigenvalue λCL

of the actual system?

(c) If there were no estimation errors in the model parameters and there were no other source of
disturbances, the state variable δ[i] would eventually converge to 0 assuming the system is stable,
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i.e., |λCL| < 1. However, with the given estimation error, δ[i] may not converge to 0 but to some
other constant, which is called the steady state error δSS = limi→∞ δ[i].

Remember, BIBO stability just promises that a bounded disturbance gives rise to a bounded
output — it doesn’t say that the result will be zero.

What is the steady state error δSS given 10% estimation error in θL and θR as in Equations (21)
and (22)? Assume that even with the estimation error, you have chosen fL and fR such that
|λCL| < 1.

You should see that this is not zero, but instead depends on the target velocity vt as well as the
βR and βL constants. Physically, this reflects the fact that the car will go straight, but it might
turn a little before starting to go straight.
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3. Cayley-Hamilton and Controllability Matrix

(a) We can define the characteristic polynomial of a matrix A ∈ Rn×n as

pA(λ) = λn + cn−1λn−1 + · · ·+ c1λ + c0λ0 (23)

where each ci ∈ R is a constant. The characteristic polynomial has roots that are the eigenvalues
of A. That is, we can equivalently define

pA(λ) = det{λI − A} (24)

We say that any of the eigenvalues of A “satisfy” the characteristic polynomial in that

pA(λi) = 0 (25)

where λi is the ith eigenvalue of A. Now, let A be a diagonalizable matrix, where we may write
A = VΛV−1. Prove that A satisfies its own characteristic polynomial. In other words, prove
that pA(A) = 0n×n, where 0n×n is a n × n matrix of zeros.

(HINT: It is not correct to simply plug in λ = A into det{λI − A}.)

(b) Now, consider some vector b⃗ ∈ Rn. Using the result from the previous part, show that An⃗b is
linearly dependent on An−1⃗b, An−2⃗b, . . . , A⃗b, b⃗.

(c) Instead of setting b⃗ to be a vector, let it be a matrix B ∈ Rn×m. Now, show that the columns of
AnB are linearly dependent on the columns of An−1B, An−2B, . . . , AB, B.

(HINT: If we were to write B =
[⃗
b1 b⃗2 · · · b⃗m

]
where each column is n-dimensional, we can write

AiB =
[

Ai⃗b1 Ai⃗b2 · · · Ai⃗bm

]
. Make sure you convince yourself of this.)

(d) Consider a discrete time system of the form

x⃗[i + 1] = Ax⃗[i] + Bu⃗[i] (26)

where A ∈ Rn×n and B ∈ Rn×m. The controllability matrix for this discrete time system is given
by

C =
[

An−1B An−2B · · · AB B
]

(27)

Conclude that the rank of your controllability matrix will not change if, instead, you made
your controllability matrix

[
AnB An−1B · · · AB B

]
(i.e., you prepended AnB to your

original controllability matrix).
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4. CCF Transformation and Controllability

(a) Consider the following discrete time system

x⃗[i + 1] = Ax⃗[i] + Bu⃗[i] (28)

Suppose we define a change of basis operation given by Mz⃗[i] = x⃗[i] ⇐⇒ z⃗[i] = M−1 x⃗[i]. This
yields a new discrete time system of the form

z⃗[i + 1] = Ã⃗z[i] + B̃u⃗[i] (29)

for some Ã and B̃ defined in terms of M, A, and B. What is the controllability matrix for the
system in eq. (29), in terms of M, A, and B?

(b) Consider the change of basis given by z⃗[i] = T−1 x⃗[i] where, under this change of basis transfor-
mation, we have the following discrete time system

z⃗[i + 1] = ACCF⃗z[i] + BCCFu⃗[i] (30)

Using the result from the previous part, determine an expression for T in terms of C, the
controllability matrix of the original system in eq. (28), and CCCF, the controllability matrix of
the system in eq. (30).

(c) We know that the controllability matrix for a system in CCF will always be full rank. Using this,
prove that you can find a transformation matrix T as in the previous part if and only if your
original system is controllable. (HINT: To prove this, you can first show that, if such a T exists, then
your original system is controllable. Then, you can show that, if your original system is controllable,
there will exist such a transformation matrix T.) (HINT: Recall that T must be invertible (equivalently,
full rank) in order for it to be a valid transformation matrix. You may use without proof the fact that
rank(AB) = min(rank(A), rank(B)).)

(d) Consider the following discrete-time dynamics model:

x⃗[i + 1] =

[
1 1
0 1

]
︸ ︷︷ ︸

A

x⃗[i] +

[
0
1

]
︸︷︷︸

b⃗

u⃗[i] (31)

Find the transformation matrix T such that the dynamics model for z⃗[i] = T−1 x⃗[i] is in CCF.
You may use a calculator/computer to perform any computations, if you wish.

(HINT: First, find the characteristic polynomial of A. Use this to determine what ACCF and b⃗CCF should
be, and then use this to determined CCCF.)
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