
EECS 16B Designing Information Systems and Devices II UC Berkeley Spring 2023
Homework 11

This homework is due on Saturday, April 15, 2023 at 11:59PM. Self-
grades and HW Resubmissions are due the following Saturday, April
22, 2023 at 11:59PM.

1. Spectral Theorem for Real Symmetric Matrices

We want to show that every real symmetric matrix can be diagonalized by a matrix of its orthonormal
eigenvectors. In other words, a symmetric matrix S ∈ Rn×n, i.e., a matrix S such that S = S⊤, can be
written as S = VΛV⊤, where V ∈ Rn×n is an orthonormal matrix of eigenvectors of S and Λ ∈ Rn×n

is a diagonal matrix of corresponding real eigenvalues of S. This is called the Spectral Theorem for
real symmetric matrices.

To do this, we will use a proof which is similar to the proof of existence of the Schur decomposition.
Along the way, we will practice block matrix manipulation and the induction proof technique.

(a) One part of the spectral theorem can be proved without any further delay. Prove that the eigen-
values λ of a real, symmetric matrix S are real.

(HINT: Let λ be an eigenvalue of S with corresponding nonzero eigenvector v⃗. Evaluate v⃗
⊤

Sv⃗ in two
different ways: v⃗

⊤
(Sv⃗) and (⃗v

⊤
S)⃗v. What does this show about λ?)

(b) For the main proof that every real symmetric matrix is diagonalized by a matrix of its orthonor-
mal real eigenvectors, we will proceed by induction.

Recall that an inductive proof trying to prove a statement that depends on n, say Pn
1, is true for

all positive integers n, has two steps:

• A base case – prove that P1 is true.

• An inductive step – for every n ≥ 2, given that Pn−1 is true, prove that Pn is true.2

By doing these two steps, we show Pn is true for all n.

In our case, the statement Pn is "every n × n symmetric matrix S can be diagonalized as S =

VΛV⊤, where V is the real orthonormal matrix of eigenvectors of S, and Λ is the real diagonal
matrix of corresponding eigenvalues of S."

Show the base case: every 1 × 1 symmetric matrix S can be written as S = VΛV⊤, where V
is a real and orthonormal matrix of eigenvectors of S, and Λ is a real and diagonal matrix of
corresponding eigenvalues of S.

(HINT: Every 1× 1 matrix is symmetric, and also diagonal, by definition; the only real orthonormal 1× 1
matrices are

[
1
]

and
[
−1

]
.)

1Lecture used Sn, but S is already being used for symmetric matrix here.
2This is the so-called weak induction paradigm; it contrasts with strong induction, which you can learn in future classes like CS70.
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(c) With the base case done, we are now in the inductive step. Let S be an arbitrary n × n symmetric
matrix; ultimately, we want to show that S = VΛV⊤, where V is a real and orthonormal matrix
of eigenvectors of S, and Λ is a real and diagonal matrix of corresponding eigenvalues of S.

To start, let λ be an eigenvalue of S, and let q⃗ be any normalized eigenvector of S corresponding
to eigenvalue λ. Let Q̃ ∈ Rn×(n−1) be a set of orthonormal vectors chosen so that Q :=

[⃗
q Q̃

]
∈

Rn×n is an orthonormal matrix.3 Show the following equality:

Q⊤SQ =

[
λ 0⃗⊤n−1

0⃗n−1 S0

]
where S0 := Q̃⊤SQ̃. (1)

(HINT: Expand Q as a block matrix
[⃗
q Q̃

]
and multiply Q⊤SQ =

[⃗
q Q̃

]⊤
S
[⃗
q Q̃

]
.)

(HINT: Since Q is orthonormal, we have Q⊤Q = In. What does this mean for the values of q⃗⊤ q⃗ and

Q̃⊤ q⃗? Use block matrix multiplication on Q⊤Q =
[⃗
q Q̃

]⊤ [⃗
q Q̃

]
again.)

(d) Show that the matrix S0 is a real symmetric matrix.

(e) Since S0 is a real symmetric (n − 1) × (n − 1) matrix, by our inductive assumption, S0 can be
orthonormally diagonalized as S0 = V0Λ0V⊤

0 , where Λ0 is a real diagonal matrix of eigenval-
ues of S0 and V0 ∈ R(n−1)×(n−1) is a real orthonormal matrix of corresponding eigenvectors of S0.

Define

V := Q

[
1 0⃗⊤n−1

0⃗n−1 V0

]
and Λ := V⊤SV. (2)

i. Show that V is orthonormal.

ii. Show that Λ is diagonal.

iii. Show that S = VΛV⊤.

(HINT: Use block matrix multiplication again.)
Thus, we have found a real orthonormal V and real diagonal Λ such that S = VΛV⊤ = VΛV−1.
We have seen in a previous homework that if A = VΛV−1, then Λ are the eigenvalues of A, and V
are the corresponding eigenvectors. Thus, given Pn−1 – the fact that we can orthonormally diagonalize
(n− 1)× (n− 1) real symmetric matrices – we have proven Pn – the fact that we can orthonormally di-
agonalize n × n real symmetric matrices. Thus, we’ve proved the Spectral Theorem for real symmetric
matrices by induction!

3This matrix Q̃ can be generated via Gram-Schmidt, for example.
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2. SVD

(a) Consider the matrix

A =

−1 1 5
3 1 −1
2 −1 4

 .

Observe that the columns of matrix A are mutually orthogonal with norms
√

14,
√

3,
√

42.

Verify numerically that columns

 1
1
−1

 and

 5
−1
4

 are orthogonal to each other.

(b) Write A = BD, where B is an orthonormal matrix and D is a diagonal matrix. What is B? What
is D?

(c) Write out a singular value decomposition of A = UΣV⊤ using the previous part. Note the
ordering of the singular values in Σ should be from the largest to smallest. (HINT: There is no
need to compute the eigenvalues of anything. Use Theorem 14, Note 14.)

(d) Given the matrix

A =
1√
50

[
3
4

] [
1 −1

]
+

3√
50

[
−4
3

] [
1 1

]
, (3)

write out a singular value decomposition of matrix A in the form UΣV⊤. Note the ordering of
the singular values in Σ should be from the largest to smallest. (HINT: You don’t have to compute
any eigenvalues for this. Some useful observations are that

[
3, 4

] [−4
3

]
= 0,

[
1,−1

] [1
1

]
= 0, ∥

[
3
4

]
∥ = ∥

[
−4
3

]
∥ = 5, ∥

[
1
−1

]
∥ = ∥

[
1
1

]
∥ =

√
2.

)

(e) Define the matrix

A =

[
−1 4
1 4

]
.

Find the SVD of A by following the standard algorithm introduced in Note 14, i.e. by com-
puting the eigendecomposition of A⊤A. Also find the eigenvectors and eigenvalues of A. Is
there a relationship between the eigenvalues or eigenvectors of A with the SVD of A?

© UCB EECS 16B, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 3
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3. Frobenius Norm

In this problem we will investigate the basic properties of the Frobenius norm.

Similar to how the norm of vector x⃗ ∈ Rn is defined as ∥x∥ =
√

∑n
i=1 x2

i , the Frobenius norm of a
matrix A ∈ Rm×n is defined as

∥A∥F =

√√√√ m

∑
i=1

n

∑
j=1

|Aij|2. (4)

Aij is the entry in the ith row and the jth column. This is basically the norm that comes from treating
a matrix like a big vector filled with numbers.

(a) With the above definitions, show that for a 2 × 2 matrix A:

∥A∥F =
√

tr
(

A⊤A
)
. (5)

Note: The trace of a matrix is the sum of its diagonal entries. For example, let A ∈ Rm×n, then,

tr(A) =
min(n,m)

∑
i=1

Aii (6)

Think about how/whether this expression eq. (5) generalizes to general m × n matrices.

(b) Show for any matrix A ∈ Rm×n:

∥A∥F =
∥∥∥A⊤

∥∥∥
F

(7)

A purely written or mathematical solution will be sufficient for this problem.

(HINT: For the mathematical solution, use the trace interpretation from eq. (4).)

(c) Show that if U and V are square orthonormal matrices, then

∥UA∥F = ∥AV∥F = ∥A∥F . (8)

(HINT: Use the trace interpretation from part (a) and the equation from part (b).)

(d) Use the SVD decomposition to show that ∥A∥F =
√

∑n
i=1 σ2

i , where σ1, . . . , σn are the singular
values of A.

(HINT: The previous part might be quite useful.)
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