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Outline

• Introduction to Transistors
• Simple Transistor Models
• Logic Gates
• Maximum Clock Rates : RC Circuit
• Op-amp settling behavior
• Applications:
– Analog-to-Digital Conversion (ADC)
– Digital-to-Analaog Conversion (DAC)
– Maximum conversion times : RC Circuits !
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MOS Capacitor
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Preview:  Transistor
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MOS Transistor Schematic
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Toy Physical Model of Transistor

• If we charge up the MOS capacitor, we create a channel that 
allows current to flow from the source to drain (electron flow)

• If the voltage at the gate is not sufficient to pass a threshold, 
the path is too resistive and we model it as an open circuit.
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Transistors Have Polarity

• You can build two kinds of transistors, ones that use electron 
flow to establish current and another that uses “holes” 
(positive charges with about twice the mass of electrons).  

• Holes are legitimate quasi-particles that represent electrons 
moving among the various bonding states (valence band) in a 
crystal
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Transistor As Switch
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Transistor I-V Curve

• Constant current and “switch” region
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Switch On-Resistance
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Switch Gate Capacitance
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Switch Off Capacitance
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Transistor as a Transconductor

• The channel conductivity is modulated by the gate voltage.
• What’s a circuit element that has this property?
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CMOS Inverter
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Logic Gates
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Differential Equations for Inverter



EECS 16B Spring 2023 Lecture 1, Slide 18 Instructors: Prof. Niknejad/Ramchandran

I-V Curve Again
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Op-Amp Model with RC
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Amplifier Settling Time



Applications
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R-2R Ladder Digital-to-Analog Converter

How to set all these “digital” voltages?
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Switches
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CMOS Gates
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Remember Superposition and Equivalence?
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R-2R Ladder Digital-to-Analog Converter
Use superposition: Start with first voltage source:
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R-2R Ladder Digital-to-Analog Converter
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Adding all contributions from the sources
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How fast can we “convert”?
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Analog to Digital Conversion
Say we want to convert an analog signal to a 2 bit digital signal à 4 levels
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Lab 2: SAR (Successive Approximation 
Resistor) ADC

EECS16B Designing Information Devices and Systems II
Spring 2022 UC Berkeley Lab Note 2

As another example, let’s say that we are 5.8 hours behind in lecture (which we will represent as 5.8V), and we
would like to convert that number into its digital representation so that we can store it easily. We have access to a 3-bit
SAR ADC with a reference voltage Vre f of 8V. Figure 6 shows the output of the DAC in the ADC as the algorithm
progresses and tries to find the closest match to the 5.8V input we feed it.

Figure 6: DAC output as SAR ADC algorithm progresses for an input of 5.8V

In the first step, you can see the MSB turns on and produces a DAC voltage of 4V, which is half of Vre f , as expected.
The comparator tells us that this voltage is still less than the input voltage of 5.8V, so we leave this bit on. In the next
step, we turn on the middle bit, which produces a step of 2V (Vre f /4). But now, the combined step of the MSB and
middle step produces 6V, which is greater than our 5.8V input. The algorithm detects that we’ve overstepped and turns
the middle bit off before proceeding onto the final bit, the LSB. In the final step, the LSB turns on, producing a step
of 1V (Vre f /8), and the combined step of the MSB and LSB produces a 5V DAC output. The comparator once again
tells us that this is less than the input voltage, but we’re out of bits we can work with, so the algorithm terminates. The
closest 3-bit digital representation we can get for this 5.8V is 101, which corresponds to an analog voltage of 5V. If
we had more bits, we would be able to more closely approximate the true input voltage and get a better representation.

Below is a figure of how we will implement this ADC in the lab using our Arduino. Our ADC will have 4 bits of
resolution, as shown in the image below. The Arduino handles the SAR logic (executed in code) and the 4 pins each
represent one bit, each taking on a voltage of either 0V or Vre f (which is 5V for the Arduino).

VDD

+

�

VDD

VIN

VDAC

DIGITAL DATA OUT
(to serial monitor)ARDUINO

A1

2R

B

12

2R

13

2R

8

C

2R

7

A

2R

R R R

Written by Mia Mirkovic (2019). Version 2.0, 2020.
Edited by Yi-Hsuan Shih, Steven Lu (2021). Version 3.0, 2021.

6 Lab Note 2 — DAC/ADC


