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Outline
• Inductance
• Inductors
• Differential Equations
• Mutual Inductors
• Transformers
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Inductors

• Inductors store energy in the magnetic field
• Current carrying coils wound around a 

magnetic core material (popular materials 
are various types of iron oxides – often called 
ferrites) or “air core” inductors for higher 
frequencies

Symbol:

Image source: Digikey
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Magnetic Flux

• Governed by Faraday’s law of electromagnetic induction which 
states that a time-varying magnetic flux linking a coil induces a 
voltage across the coil which is proportional to the rate of change in 
the current. This proportionality constant is the inductance
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Waterwheel Analogy

• Angular momentum of waterwheel keeps current flowing !
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Classic AM Radio
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Inductors

Communication needs sending and receiving of

Electro-Magnetic Wave
! "



EECS 16B Spring 2023 Module 4, Slide 9 Instructors: Prof. Niknejad/Ramchandran

DC-DC Convertor 
• Inside of virtually every 

electronic device including 
microprocessors 

• By varying the duty cycle 
of the switching 
waveform, we can “boost” 
the DC voltage.  We can 
also step down the voltage 
with a “buck” converter.
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Current in an Inductor
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Stored Energy in an Inductor
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Inductances in Series and Parallel
Series: Common Current Parallel: Common Voltage
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Integrated Circuit Inductors

• Can’t build “3D” solenoid types so typically build spiral 
inductors.  These are “tiny” (radius ~ thickness of hair)
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Inductance of Circuits

• Even if we try to avoid building an inductor, any closed loop 
circuit has intrinsic inductance !
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Summary
Capacitors:
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• # cannot charge instantaneously

• ( can charge instantaneously (do not 
short circuit a charged capacitor)

• N capacitors in series
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Inductors:
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• ( cannot charge instantaneously

• # can charge instantaneously (do not 
open an inductor with current)
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General Solution of the Differential Equation

'3
'$ + 43 $ = 5($)

For a first order, linear differential equation of the form:

where we assume a to be a constant

Homogeneous Solution
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⇒ ln 3 = −4$ + .
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Particular Solution (Integrating Factor Method):
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We want to find a multiplier function f(t) 
such that
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Digital Signals to a RC circuit

Slide 141EE40 Fall
2006
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Solving for the Voltage (t > 0)

• Note that the voltage changes abruptly:
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Solving for Power and Energy Delivered (t > 0)
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Natural Response Summary

RL Circuit

• Inductor current cannot 
change instantaneously

• time constant

RC Circuit

• Capacitor voltage cannot 
change instantaneously

• time constant
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• Every node in a real circuit has capacitance; it’s the charging 
of these capacitances that limits circuit performance (speed)

We compute with pulses. 

We send beautiful pulses in:

But we receive lousy-looking 
pulses at the output:

Capacitor charging effects are responsible!
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Digital Signals

• Every node in a real circuit has capacitances

• Even if we send in very ‘pure’ square 
looking pulses what we actually get are 
distorted pulsed due to capacitor charging 
and discharging. If we switch very very
slowly, we may not even notice this 
behavior, but it’s always there.
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Pulse Distortion

The input voltage pulse width must be large 
enough; otherwise the pulse is distorted
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Computers are RC circuits (almost)
• Digital circuits are predominantly RC circuits (other than the communication part)

• Simplistically a logic gate can be model as a RC circuit

• The speed of the computer is limited by the RC time constant
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R-L Circuits
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Steady State 
Capacitors: Inductors:
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Same Equations à Same Solution
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Mutual Inductance
• Mutual inductance occurs when two windings are arranged so that they have a 

mutual flux linkage
• The change in current in one winding causes a voltage drop to be induced in the 

other

Transformers (adapters), motors, generators (electric cars)
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Flux Linkage

• Magnetic fields vary in time and space.  Circuits that “cut” into 
flux will experience electromagnetic induction.  

• Note:  These are not intentional transformers !
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The Dot Convention
• If a current enters the dotted terminal of a coil, 

the reference polarity of the voltage induced in 
the other coil is positive at its dotted terminal.

• If a current leaves the dotted terminal of a coil, 
the reference polarity of the voltage induced in 
the other coil is negative at its dotted terminal.

• Total voltage induced in a coil is a summation of its 
own induced voltage and the mutually induced 
voltage
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Transformers

• A common magnetic core is used to boost inductance
• By varying the turns ratio, we can boost the voltage or current
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RFID :  Transformer at a Distance !

• Card keys, contactless payment, inductive charging
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Why We Twist Wires !

• Twisted pair has a spatially varying 
magnetic flux that cancels (it flips 
orientation).  Many such twisted 
pairs can be bundled together and 
used to send signals over long 
distances.  This minimizes 
interference.
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GFI Circuits (Berkeley Invention !)

• If a device is operating under normal conditions, the + and –
currents are balanced and the GFI coil does not detect a signal. 
If these currents are imbalanced, it’s possible current is flowing 
through another object (person), so the current is interrupted.
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